Author: Longuevergne, D.
Paper Title Page
TUPOJO22 Progress of PIP-II Activities at IJCLab 402
 
  • P. Duchesne, N. Gandolfo, D. Le Dréan, D. Longuevergne, R. Martret, T. Pépin-Donat, F. Rabehasy, S. Roset, L.M. Vogt
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • P. Berrutti, M. Parise, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Since 2018, IJCLab is involved in PIP-II project on the design and development of accelerator components for the SSR2 (Single Spoke Resonator type 2) section of the superconducting linac. First pre-production components have been fabricated, surface processing and cavity qualification in vertical cryostat are on-going. IJCLab has upgraded its facilities by developing a new set-up to perform rotational BCP. The progress of all processing and testing activities for PIP-II project will be reported and, in particular, a dedicated study to qualify removal uniformity compared to static BCP will be presented.  
poster icon Poster TUPOJO22 [1.997 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO22  
About • Received ※ 23 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA15 Multipactor Studies: Simulations and Measurements on the RF Coaxial Resonator Test Bench 445
 
  • Y. Gómez Martínez, J. Angot, M.A. Baylac, T. Cabanel, M. Meyer
    LPSC, Grenoble Cedex, France
  • D. Longuevergne, G. Sattonnay
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Multipactor is an undesired phenomenon triggered by electromagnetic fields in accelerator components and more specifically in RF structures, such as accelerating cavities and power couplers, and may lead to Electron Cloud build up in beam tubes. The accelerator group at LPSC has developed an experimental setup dedicated to multipactor studies. It consists in a coaxial resonator, tunable and operational between 100 MHz and 1 GHz. It allows to characterize under real conditions the efficiency of surface treatment mitigation processes (coatings, cleaning procedures) at room temperature. This paper presents the experimental measurements performed with this setup confronted to simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA15  
About • Received ※ 12 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE17 Fabrication Experience of the Pre-Production PIP-II SSR2 Cavities at Fermilab 529
 
  • M. Parise, D. Passarelli, V. Roger
    Fermilab, Batavia, Illinois, USA
  • P. Duchesne, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Proton Improvement Plan-II (PIP-II, [1]) linac will in- clude 35 Single Spoke Resonators type 2 (SSR2). A total of eight pre-production SSR2 jacketed cavities will be procured and five installed in the first pre-production cryomodule. The mechanical design of the jacketed cavity has been finalized and it will be presented in this paper along with fabrication and processing experience. The importance of interfaces, quality controls and procurement aspects in the design phase will be remarked as well as lessons learned during the fabri- cation process. Furthermore, development studies will be presented together with other design validation tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE17  
About • Received ※ 14 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE10 RF Characterisation of Bulk Niobium and Thin Film Coated Planar Samples at 7.8 GHz 818
SUPCPA04   use link to see paper's listing under its alternate paper code  
 
  • D.J. Seal, G. Burt, O.B. Malyshev, B.S. Sian, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt, D.J. Seal, B.S. Sian
    Lancaster University, Lancaster, United Kingdom
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • O. Hryhorenko, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • O.B. Malyshev, E.A. Marshall, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.S. Marks
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Research is ongoing into the use of superconducting thin films to replace bulk niobium for future radio frequency (RF) cavities. A key part of this research requires measuring the RF properties of candidate films. However, coating and testing thin films on full-sized cavities is both costly and time-consuming. Instead, films are typically deposited on small, flat samples and characterised using a test cavity. A cost-effective facility for testing such samples has recently been built and commissioned at Daresbury Laboratory. The facility allows for low power surface resistance measurements at a resonant frequency of 7.8 GHz, temperatures down to 4 K and sample surface magnetic fields up to 1 mT. A brief overview of this facility as well as recent results from measurements of both bulk Nb and thin film coated samples will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE10  
About • Received ※ 11 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)