Author: Liepe, M.
Paper Title Page
TU1AA02 Compact, Turn-Key SRF Accelerators 290
SUPCJO04   use link to see paper's listing under its alternate paper code  
 
  • N.A. Stilin, A.T. Holic, M. Liepe, T.I. O’Connell, J. Sears, V.D. Shemelin, J. Turco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The de­vel­op­ment of sim­pler, com­pact Su­per­con­duct­ing RF (SRF) sys­tems rep­re­sents a new sub­ject of re­search in ac­cel­er­a­tor sci­ence. These com­pact ac­cel­er­a­tors rely on ad­vance­ments made to both Nb3Sn SRF cav­i­ties and com­mer­cial cry­ocool­ers, which to­gether allow for the re­moval of liq­uid cryo­gen­ics from the sys­tem. This ap­proach to SRF cav­ity op­er­a­tion, based on novel con­duc­tion cool­ing schemes, has the po­ten­tial to dras­ti­cally ex­tend the range of ap­pli­ca­tion of SRF tech­nol­ogy. By of­fer­ing ro­bust, non-ex­pert, turn-key op­er­a­tion, such sys­tems en­able the use of SRF ac­cel­er­a­tors for in­dus­trial, med­ical, and small-scale sci­ence ap­pli­ca­tions. This pre­sen­ta­tion will pro­vide an overview of the sig­nif­i­cant progress being made at Cor­nell, Jef­fer­son Lab, and Fer­mi­lab (FNAL), in­clud­ing sta­ble cav­ity op­er­a­tion at 10 MV/m. It will also in­tro­duce the pri­mary chal­lenges of this new field and their po­ten­tial so­lu­tions, along with an overview of the var­i­ous ap­pli­ca­tions which could ben­e­fit the most from this tech­nol­ogy.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU1AA02 [4.683 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU1AA02  
About • Received ※ 29 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 14 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1AA06 Next-Generation Nb3Sn Superconducting RF Cavities 305
SUPCJO08   use link to see paper's listing under its alternate paper code  
 
  • N.M. Verboncoeur, G. Gaitan, M. Liepe, R.D. Porter, L. Shpani, N.A. Stilin, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Nb3Sn cur­rently is the most promis­ing al­ter­na­tive ma­te­r­ial for next-gen­er­a­tion, higher-per­for­mance SRF cav­i­ties. Sig­nif­i­cant re­cent progress has been made in fur­ther in­creas­ing ef­fi­ciency, max­i­mum field, and demon­strat­ing readi­ness for first ap­pli­ca­tions in ac­tual ac­cel­er­a­tors. This paper will pre­sent an overview of world­wide re­cent progress in mak­ing this ma­te­r­ial a vi­able op­tion for fur­ther ac­cel­er­a­tors.  
slides icon Slides TU1AA06 [6.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU1AA06  
About • Received ※ 31 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 04 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE15 Measuring the Seebeck Coefficient at Cryogenic Temperatures for LCLS-II-HE Project 825
SUPCPA01   use link to see paper's listing under its alternate paper code  
 
  • L. Shpani, M. Ge, A.T. Holic, M. Liepe, J. Sears, N.M. Verboncoeur
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the DOE LCLS-II HE Project.
The See­beck ef­fect plays a cru­cial role dur­ing the cooldown pro­ce­dure in SRF based ac­cel­er­a­tors, like LCLS-II at SLAC. The tem­per­a­ture-de­pen­dent See­beck co­ef­fi­cient quan­ti­ta­tively mea­sures the strength of elec­tric po­ten­tial in­duced by ther­mal gra­di­ents in met­als. This ef­fect is pre­sent in cry­omod­ules and dri­ves ther­mo­elec­tric cur­rents gen­er­at­ing mag­netic fields. These fields can get trapped in cav­i­ties and cause ad­di­tional dis­si­pa­tion in RF fields. We have there­fore de­signed and com­mis­sioned an ex­per­i­men­tal setup that does con­tin­u­ous mea­sure­ments of the See­beck co­ef­fi­cient for cryo­genic tem­per­a­tures rang­ing from 200K down to below 10K. We pre­sent re­sults of the mea­sure­ments of this co­ef­fi­cient for ma­te­ri­als com­monly used in cry­omod­ules, such as nio­bium, ti­ta­nium, nio­bium-ti­ta­nium, sil­i­con bronze, and stain­less steel.
 
poster icon Poster THPOGE15 [0.959 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE15  
About • Received ※ 27 August 2022 — Revised ※ 04 September 2022 — Accepted ※ 26 September 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)