Paper | Title | Page |
---|---|---|
MOPOPA20 | Q Drop Tendency of Half-Wave Resonator Cavity | 118 |
|
||
All HWRs (half-wave resonator superconducting cavities) have been fabricated and installed in the low energy section of the LINAC in IBS. All HWR cavities have been tested (vertical tests, VT) both at 4.2 K and 2.1 K cryogenic surroundings although operating temperature of HWRs is 2.1 K. Good cavities of high quality factors showed the Q drop tendency of 2.1 k were very similar to that of 4.2 K. However, in many cases, Q drop tendency of 2.1 K were not similar with 4.2 K, rather Q decreased more rapidly than 4.2 K which means the surface resistance of the cavity rapidly increased at 2 K surrounding. In this study, we will report that various Q results of HWRs and compare their Q drop tendency as a function of temperature, 2.1 K and 4.2 K. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA20 | |
About • | Received ※ 23 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOGE23 | Conservation of Quality Factor for Superconducting Cavity and Heartbeat under Relativistic Motion | 204 |
|
||
Funding: This research was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science and National Research Foundation of Korea (NRF-2013M7A1A1075764). The conservation of quality factor under relativistic motion is applied to the superconducting cavity as well as the heartbeat of mammal. The quality factor of the superconducting cavity is conserved under relativistic motion. The frequency of the cavity decreases and the decay time increases as the velocity and acceleration are increased. The quality factor of the superconducting cavity is comparable with the total heartbeat of the mammal. The quality factor for the heartbeat of the mammal representing the total number of heartbeat is also conserved under relativistic motion. Therefore, the heart rate is inversely proportional to the life expectancy under relativistic motion. |
||
Poster MOPOGE23 [0.765 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE23 | |
About • | Received ※ 25 July 2022 — Revised ※ 23 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOGE24 | Understanding Q Slope of Superconducting Cavity with Magnetic Defect and Field Emission | 208 |
MOOPA07 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This research was supported by the RISP of ibs funded by the Ministry of Science and the National Research Foundation (NRF) of the Republic of Korea under Contract 2013M7A1A1075764. RF test for quarter-wave resonator (QWR) and half-wave resonator (HWR) superconducting cavities is performed at low temperature. The quality factors of the superconducting cavities are measured as a function of accelerating field. The magnetic heating effect for the quarter-wave resonator (QWR) is studied. For the half-wave resonator (HWR), the Q slope degradation is investigated with x-ray radiation and field emission. |
||
Slides MOPOGE24 [2.506 MB] | ||
Poster MOPOGE24 [1.174 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE24 | |
About • | Received ※ 25 July 2022 — Revised ※ 18 August 2022 — Accepted ※ 23 August 2022 — Issue date ※ 12 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |