Paper |
Title |
Page |
THPOJO09 |
Status of CLARA at Daresbury Laboratory |
711 |
|
- D. Angal-Kalinin, A.R. Bainbridge, A.D. Brynes, R.K. Buckley, S.R. Buckley, H.M. Castañeda Cortés, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, A.J. Gilfellon, A.R. Goulden, J. Henderson, S. Hitchen, F. Jackson, C.R. Jenkins, M.A. Johnson, J.K. Jones, N.Y. Joshi, M.P. King, S.L. Mathisen, J.W. McKenzie, R. Mclean, K.J. Middleman, B.L. Militsyn, K.T. Morrow, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, W.A. Okell, H.L. Owen, T.H. Pacey, A.E. Pollard, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, A.E. Wheelhouse, P.H. Williams
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- A.R. Bainbridge, A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, C.R. Jenkins, K.J. Middleman, A.J. Moss, B.D. Muratori, H.L. Owen, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.J. Vick, A.E. Wheelhouse
Cockcroft Institute, Warrington, Cheshire, United Kingdom
- A.D. Brynes
Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
- R.J. Cash, R.F. Clarke, M. Colling, G. Cox, B.D. Fell, S.A. Griffiths, M.D. Hancock, T. Hartnett, J.P. Hindley, C. Hodgkinson, G. Marshall, A. Oates, A.J. Vick, J.T.G. Wilson
STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
- J. Henderson
Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
|
|
|
CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory. The Front End of CLARA has been used for user exploitation programme from 2018. The second exploitation period in 2021-22 provided a range of beam parameters to 8 user experiments. We report on the status, further machine development, and future plans for CLARA including Full Energy Beam Exploitation (FEBE) beamline which will provide 250 MeV/c high brightness beam for novel experiments.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO09
|
|
About • |
Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 15 September 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPOJO10 |
RF Design and Characterisation of the CLARA 10 Hz Gun with Photocathode Load/Lock Upgrade |
715 |
|
- A.J. Gilfellon, L.S. Cowie, T.J. Jones, B.L. Militsyn, R. Valizadeh
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
|
|
|
The 2.5 cell S-band 10 Hz repetition rate electron gun (Gun-10) for the CLARA (Compact Linear Accelerator for Research and Applications) facility underwent an upgrade during the scheduled shutdown period during the summer of 2019. The existing photocathode/back plate was replaced by a new back plate with interchangeable photocathode socket connected to a load/lock system capable of rapid exchanges of photocathode plugs. Here we outline motivation and RF design of the back plate and also detail the low power RF testing and characterisation of the upgraded gun in terms of the unloaded quality factor, the RF power coupling match, the percent field flatness and the operating frequency of the cavity, calculated from the frequency measured in the laboratory. Finally, via simulations using CST MWS and ASTRA, we produce a dependence of expected beam momentum vs forward power that we predict the gun will deliver once it goes back online.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO10
|
|
About • |
Received ※ 25 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 September 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPORI15 |
Operation of the CLARA Linear Accelerator with 2.5 Cell 10 Hz Photocathode Gun with Interchangeable Photocathodes |
854 |
|
- B.L. Militsyn, D. Angal-Kalinin, A.R. Bainbridge, L.S. Cowie, A.J. Gilfellon, F. Jackson, N.Y. Joshi, K.J. Middleman, K.T. Morrow, T.C.Q. Noakes, M.D. Roper, R. Valizadeh, D.A. Walsh
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- R.J. Cash, B.D. Fell, T.J. Jones, A.J. Vick
STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
|
|
|
During commissioning and operation run in 2021-2022 the photoinjector of the CLARA-VELA facility a 2.5 cell cavity S-band photocathode gun originally developed for the APEX experiment was used. The copper back wall of the cavity also served as the gun photocathode. In order to reduce significant time required for replacement and/or reactivation of the photocathode and improve the flexibility of the injector the gun has been upgraded for operation with DESY/INFN style interchangeable photocathodes. This upgrade included a new design of the cavity back wall to accommodate the photocathode socket and equipping the gun with a load-lock system. Modification of the gun also required replacement of the bucking coil, which zeros field in the photocathode emission plane. After the upgrade, the gun was commissioned and then operated with a hybrid Cu/Mo photocathode during the last two years. During winter-spring 2022 experimental run the gun steadily operated with a cathode field of 60 MV/m, limited by the RF power available and with an off-centre diamond turned photocathode which delivered stable bunches with a charge of 100 pC.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI15
|
|
About • |
Received ※ 24 August 2022 — Revised ※ 08 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 15 October 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPORI16 |
Machine Learning for RF Breakdown Detection at CLARA |
858 |
|
- A.E. Pollard, D.J. Dunning, A.J. Gilfellon
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
|
|
|
Maximising the accelerating gradient of RF structures is fundamental to improving accelerator facility performance and cost-effectiveness. Structures must be subjected to a conditioning process before operational use, in which the gradient is gradually increased up to the operating value. A limiting effect during this process is breakdown or vacuum arcing, which can cause damage that limits the ultimate operating gradient. Techniques to efficiently condition the cavities while minimising the number of breakdowns are therefore important. In this paper, machine learning techniques are applied to detect breakdown events in RF pulse traces by approaching the problem as anomaly detection, using a variational autoencoder. This process detects deviations from normal operation and classifies them with near perfect accuracy. Offline data from various sources has been used to develop the techniques, which we aim to test at the CLARA facility at Daresbury Laboratory. Deployment of the machine learning system on the high repetition rate gun upgrade at CLARA has begun.
|
|
|
Poster THPORI16 [2.099 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI16
|
|
About • |
Received ※ 22 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 October 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|