Author: Farabolini, W.
Paper Title Page
THPOPA05 Status of the CLEAR User Facility at CERN and its Experiments 753
 
  • R. Corsini, W. Farabolini, A. Malyzhenkov, V. Rieker
    CERN, Meyrin, Switzerland
  • P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  The CERN Linear Accelerator for Research (CLEAR) at CERN is a versatile user facility providing a 200 MeV electron beam for accelerator R&D, irradiation studies for space, and medical applications. After successful operation in 2017-2020, CLEAR running was extended in 2021 for another 5-year period. In the paper we give a status of the facility, outlining recent progress in beam performance and hardware improvements. We report on beam operation over the last years and review the main results of experimental activities. Finally, we discuss the planned upgrades together with the proposed future experimental program.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA05  
About • Received ※ 24 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA06 Methods for VHEE/FLASH Radiotherapy Studies and High Dose Rate Dosimetry at the CLEAR User Facility 758
THOPA04   use link to see paper's listing under its alternate paper code  
 
  • P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J.J. Bateman, C.S. Robertson
    JAI, Oxford, United Kingdom
  • R. Corsini, L.A. Dyks, W. Farabolini, V. Rieker
    CERN, Meyrin, Switzerland
 
  The interest for Very High Energy Electron (VHEE) radiotherapy (RT) for cancer treatment recently bloomed, given the present availability of high-gradient accelerator technology for compact, cost effective electron linacs in the 100-200 MeV energy range. Particularly promising is the so called FLASH high dose rate regime, in which cancer cells are damaged while healthy tissue is largely spared. VHEE beams are especially adapted for FLASH RT, given their penetration depth and the high beam current, needed to treat large deep seated tumors. In the CERN Linear Accelerator for Research (CLEAR) facility, a series of unique studies have been initiated on VHEE and FLASH RT issues, in collaboration with several multidisciplinary user groups. In this paper we briefly outline the activities and its main recent results, e.g. on localized dose deposition by beam focusing, and on chemical and biological test to clarify damage mechanisms. We then describe in details the dedicated systems and the techniques adopted - and in large part locally developed by the CLEAR team - in order to satisfy the user requirements, with particular attention to the crucial aspect of high dose rate dosimetry.  
slides icon Slides THPOPA06 [1.183 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA06  
About • Received ※ 17 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)