Author: Dunning, D.J.
Paper Title Page
THPOJO09 Status of CLARA at Daresbury Laboratory 711
 
  • D. Angal-Kalinin, A.R. Bainbridge, A.D. Brynes, R.K. Buckley, S.R. Buckley, H.M. Castañeda Cortés, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, A.J. Gilfellon, A.R. Goulden, J. Henderson, S. Hitchen, F. Jackson, C.R. Jenkins, M.A. Johnson, J.K. Jones, N.Y. Joshi, M.P. King, S.L. Mathisen, J.W. McKenzie, R. Mclean, K.J. Middleman, B.L. Militsyn, K.T. Morrow, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, W.A. Okell, H.L. Owen, T.H. Pacey, A.E. Pollard, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.R. Bainbridge, A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, C.R. Jenkins, K.J. Middleman, A.J. Moss, B.D. Muratori, H.L. Owen, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.J. Vick, A.E. Wheelhouse
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Brynes
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R.J. Cash, R.F. Clarke, M. Colling, G. Cox, B.D. Fell, S.A. Griffiths, M.D. Hancock, T. Hartnett, J.P. Hindley, C. Hodgkinson, G. Marshall, A. Oates, A.J. Vick, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory. The Front End of CLARA has been used for user exploitation programme from 2018. The second exploitation period in 2021-22 provided a range of beam parameters to 8 user experiments. We report on the status, further machine development, and future plans for CLARA including Full Energy Beam Exploitation (FEBE) beamline which will provide 250 MeV/c high brightness beam for novel experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI05 Application of Virtual Diagnostics in the FEBE Clara User Area 231
 
  • J. Wolfenden, C. Swain, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Dunning, J.K. Jones, T.H. Pacey, A.E. Pollard
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Swain, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project funded by STFC and the STFC Cockcroft core grant No. ST/G008248/1.
Successful user experiments at particle beam facilities are dependent upon the awareness of beam characteristics at the interaction point. Often, properties are measured beforehand for fixed operation modes; users then rely on the long-term stability of the beam. Otherwise, diagnostics must be integrated into a user experiment, costing resources and limiting space in the user area. This contribution proposes the application of machine learning to develop a suite of virtual diagnostic systems. Virtual diagnostics take data at easy to access locations, and infer beam properties at locations where a measurement has not been taken, and often cannot be taken. Here the focus is the user area at the planned Full Energy Beam Exploitation (FEBE) upgrade to the CLARA facility (UK). Presented is a simulation-based proof-of-concept for a variety of virtual diagnostics. Transverse and longitudinal properties are measured upstream of the user area, coupled with the beam optics parameters leading to the user area, and input into a neural network, to predict the same parameters within the user area. Potential instrumentation for FEBE CLARA virtual diagnostics will also be discussed.
 
poster icon Poster MOPORI05 [0.613 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI05  
About • Received ※ 17 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI14 A Start-to-End Optimisation Strategy for the CompactLight Accelerator Beamline 573
 
  • Y. Zhao, A. Latina
    CERN, Meyrin, Switzerland
  • A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • H.M. Castañeda Cortés, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CompactLight collaboration designed a compact and cost-effective hard X-ray FEL facility, complemented by a soft X-ray option, based on X-band acceleration, capable of operating at 1 kHz pulse repetition rate. In this paper, we present a new simple start-to-end optimisation strategy that is developed for the CompactLight accelerator beamline, focusing on the hard X-ray mode. The optimisation is divided into two steps. The first step improves the electron beam quality that finally leads to a better FEL performance by optimising the major parameters of the beamline. The second step provides matched twiss parameters for the FEL undulator by tuning the matching quadrupoles at the end of the accelerator beamline. A single objective optimisation method, with different objective functions, is used to optimise the performance. The sensitivity of the results to jitters is also minimised by including their effects in the final objective function.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI14  
About • Received ※ 15 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPORI16 Machine Learning for RF Breakdown Detection at CLARA 858
 
  • A.E. Pollard, D.J. Dunning, A.J. Gilfellon
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Maximising the accelerating gradient of RF structures is fundamental to improving accelerator facility performance and cost-effectiveness. Structures must be subjected to a conditioning process before operational use, in which the gradient is gradually increased up to the operating value. A limiting effect during this process is breakdown or vacuum arcing, which can cause damage that limits the ultimate operating gradient. Techniques to efficiently condition the cavities while minimising the number of breakdowns are therefore important. In this paper, machine learning techniques are applied to detect breakdown events in RF pulse traces by approaching the problem as anomaly detection, using a variational autoencoder. This process detects deviations from normal operation and classifies them with near perfect accuracy. Offline data from various sources has been used to develop the techniques, which we aim to test at the CLARA facility at Daresbury Laboratory. Deployment of the machine learning system on the high repetition rate gun upgrade at CLARA has begun.  
poster icon Poster THPORI16 [2.099 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI16  
About • Received ※ 22 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)