Author: Cerv, M.
Paper Title Page
MOPOGE06 Automatic RF Conditioning of S-Band Cavities for Commercial Proton Therapy Linacs 154
 
  • S. Benedetti, M. Cerv, S. Magnoni, J.L. Navarro Quirante, S.G. Soriano
    AVO-ADAM, Meyrin, Switzerland
 
  The CERN spinoff company ADAM owned by Advanced Oncotherapy plc (AVO-ADAM) is completing the construction and testing of its first LIGHT (Linac for Image-Guided Hadron Therapy) system. Each LIGHT machine is composed by 20 accelerating modules: one 750 MHz RFQ, four 3 GHz Side-Coupled Drift Tube Linac (SCDTL) and 15 3 GHz Coupled-Cavity Linac (CCL). The company aims at delivering several similar LIGHT machines in the next years. A prerequisite to achieve such goal is the capability to complete the RF conditioning of the accelerating modules in a systematic and automatic way, with minimal inputs from RF engineers. In the past years ADAM developed an automatic conditioning system capable of increasing the main conditioning parameters ’ RF power, pulse width, repetition rate ’ while controlling the cavity breakdown rate and vacuum level. The system has been so far tested on about twenty accelerating structures with different brazing methodologies and RF accelerating voltages, proving its robustness. This paper discusses the ADAM automatic conditioning system design and its implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE06  
About • Received ※ 13 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE08 Low Level RF System of the Light Proton Therapy Linac 161
 
  • D. Soriano Guillén, S. Benedetti, M. Cerv, G. De Michele, Ye. Ivanisenko
    AVO-ADAM, Meyrin, Switzerland
 
  The LIGHT (Linac for Image-Guided Hadron Therapy) project was initiated to develop a modular proton accelerator delivering beam with energies up to 230 MeV for cancer therapy. The machine consists of three different kinds of accelerating structures: RFQ (Radio-Frequency Quadrupole), SCDTL (Side Coupled Drift Tube Linac) and CCL (Coupled Cavity Linac). These accelerating structures operate at 750 MHz (RFQ) and 3 GHz (SCDTL, CCL). The accelerator RF signals are generated, distributed, and controlled by a Low-Level RF (LLRF) system. The LIGHT LLRF system is based on a commercially available solution from Instrumentation Technologies with project specific customization. This LLRF system features high amplitude and phase stability, monitoring of the RF signals from the RF network and the accelerating structures at 200 Hz, RF pulse shaping over real-time interface integrated, RF breakdown detection, and thermal resonance frequency correction feedback. The LLRF system control is integrated in a Front-End Controller (FEC) which connects it to the LIGHT control system. In this contribution we present the main features of the AVO LLRF system, its operation and performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE08  
About • Received ※ 16 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)