Author: Aleksandrov, A.V.
Paper Title Page
MOPORI08 Beam Mapping Linearity Improvement in Multi-Dimensional Bunch Shape Monitor 239
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, A. Moro, A.Yu. Smirnov, K.V. Taletski
    RadiaBeam, Santa Monica, California, USA
  • A.V. Aleksandrov, A.A. Menshov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy , Office of Basic Energy Sciences, under contract DE-SC0020590.
RadiaBeam is developing a Bunch Shape Monitor (BSM) with improved performance that incorporates three major innovations. First, the collection efficiency is im-proved by adding a focusing field between the wire and the entrance slit. Second, a new design of an RF deflector improves beam linearity. Finally, the design is augmented with both a movable wire and a microwave deflecting cavity to add functionality and enable measuring the transverse profile as a wire scanner. In this paper, we pre-sent the design of the BSM and its sub-systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI08  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE20 Observation of Current-Driven Features of 2.5 Mev Ion Bunch With Complete and Efficient 5D Measurements at the SNS Beam Test Facility 541
TUOPA10   use link to see paper's listing under its alternate paper code  
 
  • K.J. Ruisard, A.V. Aleksandrov, S.M. Cousineau, A.M. Hoover, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, High Energy Physics. Authored by UT- Battelle, LLC under DOE Contract No. DE-AC05-00OR22725.
The SNS Beam Test Facility research program is focused detailed studies of beam distributions for medium-energy ion beams, with the goal of reconstructing realistic 6D bunch distributions to enable halo prediction. For complete characterization of the initial distribution, scan time scales exponentially with scan dimension. Currently, a full 6D measurement with ~10 points across most dimensions requires 30 hours. However, measurement of the 5D distribution f(x, x’,y,y’,w) can be done very rapidly using a hybrid slit/screen method. This approach requires ~4 hours to obtain at least 32 points/dimension, with very high resolution (0.5 keV) in the energy distribution. This presentation reports on the approach and results for 5D characterization of the initial RFQ-formed bunch. This includes higher-resolution views of previously reported transverse-longitudinal dependence and additional interplane dependencies that were not previously reported.
 
slides icon Slides TUPOGE20 [1.230 MB]  
poster icon Poster TUPOGE20 [1.406 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE20  
About • Received ※ 25 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 04 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)