High charge, >10 GeV laser plasma electron acceleration

Design considerations for laser-accelerators and -XFELs

B. M. Hegelich University of Texas at Austin

Linac 2022, Liverpool, September 2, 2022

Acknowledgements

- B. M. Hegelich, M. Downer
- Senior Scientists & Postdocs:
 - Constantin Aniculaesei, Ou Zhang Labun, Lance Labun, Rafal Zsagad
- Graduate Students
 - Ritwik, Sain, Eddie McCary, Drue Hood-McFadden, Austin Gottfredson, Xuejing Jiao, Ganesh Tiwari, Scott Luedtke, Paul King, Andrea Hannash

- Sponsors
- Air Force Office of Scientific Research
- US Department of Energy
- Institute for Basic Science, Republic of Korea

LASER WAKEFIELD ACCELERATION (LWFA)

SHRINKS ACCELERATORS FROM ~KM TO ~CM (~M)

Compact accelerators and laser-driven XFELs

Community Milestone: 10 GeV from a single stage

Advanced Accelerator Development Strategy Report

DOE Advanced Accelerator Concepts Research Roadmap Workshop

				2010		2010		2020	2022	4	024	20	
							eV e-beams	ams from a single stage					
			Present		Goals		Staging 2.0: demonstrati		ion of 5GeV+5GeV				
				4.3 GeV	1	10 GeV		Present	Goals	Posit	ron beams		
				30 pC		100 pC		0.1 GeV boost	5 GeV	Goal: comp	novel conc act plasma	ept for acceler	
				guiding		Matched guid	ing	Few pC. 4%	100pC, >90	based	positron s	ource	
				Fluctuates		Stable,		captured	captured	gener	ated e-beam	n LPA	
						tunable		>5 GV/m	>5GV/m	Positr	on beam cap	otured in	
125	2030	2035	2040	Second bea	ıml	ine on BELL		Emittance growth	Emittance preserved	Positr	on accelerati stage	ion in la	
JZJ	2030	2000	2040	Laser	tec	h R&D K-BE	LLA =	= kW class, kH	z, 100 TW	aser			
y Phase						5 Hz, 0.5-1	GeV	beam		kHz, 0.5-	I GeV bea	am	
nulations	with hi-fidelity, high	n speed code	S	I	Pr	esent	Goals		Present		Goals		
Positrons					ε <	0.3 micron	ε < 0.1	micron	Limited cont	ol feedback	Full feedba	ack stat	
1 CONTONE					ΔE	:/E ~ 1-5%	ΔE/E ·	< 1%	Low average	ower (<4 W)	High averag	ge powe	
					Q	~10 pC	Q~10	DC	Pointing < 0.	5 mrad	Pointing <	0.05 m	
у,					γ- ι	ray source (>10/	ph/s)		γ-ray so	urce (>10) ¹⁰ ph/	
						FA powered	I FEL	(XUV)	L	WFA powe	ered FEL ((I-I0 r	
us, coolii	ng,					Plasma tar	get a	nd energy re	covery teo	hnology			
Pro	totype Phase			Present			Go	als		Goals			
ron roto				Longitudir	nall	y uniform	Тар	ered		Heat mitigat	ion and >10 ⁸	³ shots	
rep rate	50-100 Gev lina	lc(s) = O(1-10)	JKHZ)	Parabolic			Nea	ar hollow		Photon acce	eleration to re	each hig	
s (radiati	on sources)			10 cm			>30	cm		efficiency		Ū	
Co	llider conceptual			1 kHz rep	rat	e	10	kHz rep rate		Spent laser	energy recov	very	
s des		Diagnostics											
		Collider te	ech.	Goals									
design report Collider (TDR)				Non-inva	Non-invasive phase space diagnostics for 0.01-0.1-mm-mrad								
				Femtose	Femtosecond resolution for slice properties								
	300 k	W class		3-D plase	ma	profile vs time							
SUO KVV CIASS				Simulations									
				Present					Goals				
				1 D MHD					3 D MHD				
				2 weeks t	for	1 high res 3D E	BELLA	simulation run	<1 Hr for 1	high res 3D B	ELLA simula	tion run	

GRAND CHALLENGE: 10GeV from single laser-stage

enables room-sized XFEL and affordable TeV collider (necessary but not sufficient!)

Current record LWFA energy: LBNL - Bellalaser: 7.8 GeV (2019)

PHYSICAL REVIEW LETTERS 122, 084801 (2019)

Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide

A. J. Gonsalves,^{1,*} K. Nakamura,¹ J. Daniels,¹ C. Benedetti,¹ C. Pieronek,^{1,2} T. C. H. de Raadt,¹ S. Steinke,¹ J. H. Bin, S. S. Bulanov,¹ J. van Tilborg,¹ C. G. R. Geddes,¹ C. B. Schroeder,^{1,2} Cs. Tóth,¹ E. Esarey,¹ K. Swanson,^{1,2} L. Fan-Chiang,^{1,2} G. Bagdasarov,^{3,4} N. Bobrova,^{3,5} V. Gasilov,^{3,4} G. Korn,⁶ P. Sasorov,^{3,6} and W. P. Leemans^{1,2,†} ¹Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²University of California, Berkeley, California 94720, USA ³Keldysh Institute of Applied Mathematics RAS, Moscow 125047, Russia ⁴National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia ⁵Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1, Czech Republic ⁶Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic

(Received 7 December 2018; revised manuscript received 30 January 2019; published 25 February 2019)

Guiding of relativistically intense laser pulses with peak power of 0.85 PW over 15 diffraction lengths was demonstrated by increasing the focusing strength of a capillary discharge waveguide using laser inverse bremsstrahlung heating. This allowed for the production of electron beams with quasimonoenergetic peaks up to 7.8 GeV, double the energy that was previously demonstrated. Charge was 5 pC at 7.8 GeV and up to 62 pC in 6 GeV peaks, and typical beam divergence was 0.2 mrad.

DOI: 10.1103/PhysRevLett.122.084801

Editors' Suggestion Featured in Physics

LWFA powered PWFA - Kurz et al., HZDR (2020)

Check for upda

ARTICLE

Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams

T. Kurz lo^{1,2,10 ⊠}, T. Heinemann lo^{3,4,5,10}, M. F. Gilljohann^{6,7}, Y. Y. Chang¹, J. P. Couperus Cabadağ lo¹ A. Debus ¹, O. Kononenko⁸, R. Pausch ¹, S. Schöbel ^{1,2}, R. W. Assmann³, M. Bussmann^{1,9}, H. Ding ^{6,7}, J. Götzfried^{6,7}, A. Köhler ¹, G. Raj⁸, S. Schindler^{6,7}, K. Steiniger ¹, O. Zarini¹, S. Corde ⁸, A. Döpp ^{6,7}, B. Hidding 0 ^{4,5}, S. Karsch^{6,7 \boxtimes}, U. Schramm 1,2 , A. Martinez de la Ossa 3 & A. Irman 1

PWFA stage SCONDOCK FEED ENSINE REFERE

RF accelerator bunch injection into LWFA accelerator -Tsinghua Univ., Y. Wu et al. (2020)

LETTERS https://doi.org/10.1038/s41567-021-01202-

Check for updates

High-throughput injection-acceleration of electron bunches from a linear accelerator to a laser wakefield accelerator

nature

physics

Yipeng Wu^{1,2}, Jianfei Hua¹, Zheng Zhou¹, Jie Zhang¹, Shuang Liu¹, Bo Peng¹, Yu Fang¹, Xiaonan Ning¹, Zan Nie¹, Fei Li², Chaojie Zhang², Chih-Hao Pai¹, Yingchao Du¹, Wei Lu¹, Wei Lu¹, Warren B. Mori² and Chan Joshi²

Fig. 1 | Experimental layout. a,b, A laser pulse is focused and sent collinearly with the electron beam using a mirror with a 3-mm-diameter central hole The laser focal spot is shown in a and the electron beam waist profile (measured using a removable cerium-doped yttrium-aluminium-garnet (YAG) screen) is shown in **b**. **c**, Measured neutral density profile of the gas jet along the longitudinal axis z (the blurred region shows the r.m.s. spread of five shots). The beam energy spectra are recorded by a spectrometer composed of a 1-mm-wide lead slit, a permanent dipole magnet of ~1T, a 25-µm-thick aluminium foil (not shown) and a phosphor screen (DRZ-High). The lead slit introduces an uncertainty in the incoming beam position relative to the spectrometer, and thus, its width induces an energy measurement uncertainty of -0.05 MeV. The thin aluminium foil is placed between the dipole magne and the DRZ-High screen (very close to the DRZ-High screen) to block the scattered residual drive laser and ambient light. d, A group (sorted by decreasing mean energy) showing the energy-dispersed beam distributions induced by the -100 fs timing jitter under the same experimental condition (z_i =-4.5 mm and $n_{\rm p} = 6 \times 10^{17} \, {\rm cm}^{-3}$)

Longterm stable operation of an LWFA using Bayesian Optimization and Machine Learning - Desy (2021)

PHYSICAL REVIEW LETTERS 126, 104801 (2021)

Bayesian Optimization of a Laser-Plasma Accelerator

Sören Jalas⁽⁰⁾,^{1,*} Manuel Kirchen⁽⁰⁾,¹ Philipp Messner,^{2,1,3} Paul Winkler,^{3,1} Lars Hübner,^{3,1} Julian Dirkwinkel[®],³ Matthias Schnepp,¹ Remi Lehe,⁴ and Andreas R. Maier[®]^{3,1} ¹Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ²International Max Planck Research School for Ultrafast Imaging & Structural Dynamics, Luruper Chaussee 149, 22761 Hamburg, Germany ³Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany ⁴Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Optimal Beam Loading in a Laser-Plasma Accelerator

Manuel Kirchen⁰,^{1,*} Sören Jalas⁰,¹ Philipp Messner,^{2,1} Paul Winkler,^{3,1} Timo Eichner,¹ Lars Hübner,^{3,1} Thomas Hülsenbusch,^{3,1} Laurids Jeppe^{,1} Trupen Parikh,³ Matthias Schnepp,¹ and Andreas R. Maier^{3,1} ¹Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ²International Max Planck Research School for Ultrafast Imaging and Structural Dynamics,

Luruper Chaussee 149, 22761 Hamburg, Germany ³Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany

(Received 11 August 2020; revised 16 December 2020; accepted 2 March 2021; published 26 April 2021)

<1.2% rms energy spread @ 284 MeV, 44pC, by optimal beam loading through ionization injection

The 4 +1 PW laser system at the Center for Relativistic Laser Science in South Korea

PW laser system

Relativistic Quantum Photonics

CoReLS laser can in principle produce electron bunches for collision experiment with $\chi > 1$

- Laser parameters :
 - 52 J on target, 25fs => 2PW
 - focal spot \approx 50 µm (FWHM), + 30 fs (GDD +350 fs-2),
 - $l \approx 4.2 \times 10^{19} \text{ W/cm}^2$, $a_0 \approx 4.5$
- Gas medium :
 - He mixed with 1-% Ne,
 - 7-cm gas cell •
 - plasma density $\approx 1.5 \times 10^{18}$ elec./cc

Nanoparticle-assisted electron injection into a wakefield at a 50 TW laser

www.nature.com/scientificreports

SCIENTIFIC REPORTS

natureresearch

There are amendments to this paper

OPEN

Received: 3 January 2019 Accepted: 8 July 2019 Published online: 02 August 2019

Electron energy increase in a laser wakefield accelerator using upramp plasma density profiles

Constantin Aniculaesei¹, Vishwa Bandhu Pathak¹, Hyung Taek Kim^{1,2}, Kyung Hwan Oh¹, Byung Ju Yoo¹, Enrico Brunetti⁴, Yong Ha Jang¹, Calin Ioan Hojbota^{1,3}, Jung Hun Shin¹, Jong Ho Jeon¹, Seongha Cho¹, Myung Hoon Cho¹, Jae Hee Sung^{1,2}, Seong Ku Lee ^{1,2}, Björn Manuel Hegelich^{1,3} & Chang Hee Nam^{1,3}

no nanoparticles

- The hybrid gas target can generate supersonic gas jets doped with any kind of nanoparticles
- The density and size of nanoparticle controlled by the laser energy, pulse width and fluence
- Electron peak energy and energy spread greatly improved
- **Electron beam divergence** decreased

with nanoparticles

with no nanoparticles nanoparticles

The Texas Petawatt Laser at UT Austin

Laser Parameters:

- 150 J
- 150 fs
- 1 shot/hr
- 2 Target Areas:
 - F/40: 2x10¹⁸ W/cm²
 - F/3: 10²¹ W/cm²
 - F/1: >3x10²² W/cm²

Demonstrated Performance

- 3 GeV electrons
- 100 MeV protons
- 600 MeV carbon
- 4.4 GeV Au
- >10¹⁰ neutron/shot
- >50 MeV γ-ray beam

Canonical TPW LWFA result: 2012 record Xiaoming Wang, M. Downer, et al.

ARTICLE

Received 2 Dec 2012 | Accepted 8 May 2013 | Published 11 Jun 2013

Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

Xiaoming Wang¹, Rafal Zgadzaj¹, Neil Fazel¹, Zhengyan Li¹, S. A. Yi¹, Xi Zhang¹, Watson Henderson¹, Y.-Y. Chang¹, R. Korzekwa¹, H.-E. Tsai¹, C.-H. Pai¹, H. Quevedo¹, G. Dyer¹, E. Gaul¹, M. Martinez¹, A. C. Bernstein¹, T. Borger¹, M. Spinks¹, M. Donovan¹, V. Khudik¹, G. Shvets¹, T. Ditmire¹ & M. C. Downer¹

Experimental Setup

B. M. Hegelich

Relativistic Quantum Photonics

Article Free-electron lasing at 27 nanometres based on a laser wakefield accelerator

A recent article in

Nature establishes the

ability to achieve

single pass FEL gain

using beam from a

reasonably stabilized

LWFA beam.

https://doi.org/10.1038/s41586-021-03678-x

Received: 5 August 2020

Accepted: 28 May 2021

Published online: 21 July 2021

Wentao Wang^{1,4}, Ke Feng^{1,4}, Lintong Ke^{1,2}, Changhai Yu¹, Yi Xu¹, Rong Qi¹, Yu Chen¹, Zhiyong Qin¹, Zhijun Zhang¹, Ming Fang¹, Jiaqi Liu¹, Kangnan Jiang^{1,3}, Hao Wang¹, Cheng Wang¹, Xiaojun Yang¹, Fenxiang Wu¹, Yuxin Leng¹, Jiansheng Liu¹[∞], Ruxin Li^{1,3}[∞] & Zhizhan Xu¹

516 | Nature | Vol 595 | 22 July 2021

а

Gas target

Confidential and Proprietary Information of TAU SYSTEMS, Inc.

500 600

400

Energy (MeV)

-2

X (mm)

Texas Petawatt Beams: FEL Potential?

The Texas Petawatt Laser system can be used to generate beams with interesting possibilities, as the energies and charge delivered are significant.

The rough beam parameters for the shot shown in the white circle are given below. While certainly impressive, they are not quite suitable to drive a free-electron laser as the energy spread is too large. Additional beam manipulation must be done.

Quantity	Value
Energy [GeV]	2.3
rms Energy Spread [%]	2
Charge [pC]	800
rms Bunch Length [fs]	40
Geometric Emittance [nm-rad]	0.3

Confidential and Proprietary Information of TAU SYSTEMS, Inc.

Beam Slicing to Improve the Beam Properties

P. Emma, et al.

SLAC-PUB-10002

If we add a dispersive section that has controllable R₅₆ and can be made isochronous and dispersion free as necessary, and if the LWFA generated electron beam has small slice emittance, then one could slice out a small potion of the beam with reasonable energy spread. This potion of the bunch would have parameters suitable for single pass FEL operation.

Confidential and Proprietary Information of TAU SYSTEMS, Inc.

FEL Operation at the the Water Window

Laboratory water-window x-ray microscopy

Mikael Kördel, Aurélie Dehlinger, Christian Seim, Ulrich Vogt, Emelie Fogelqvist, Jonas A. Sellberg, Holger Stiel, and Hans M. Hertz

Optica Vol. 7, Issue 6, pp. 658-674 (2020) • https://doi.org/10.1364/OPTICA.393014

Conclude: We may already have beam properties within regions of the TPW laser laser wakefield accelerated beams that could potentially drive a single pass FEL in the water window to saturation

Slicing the beam in afore mentioned manner and using a parameterization for FEL performance^{*} gives the following beam and FEL properties. Saturation in the water window is achieve with a 16.4-m long undulator

Quantity	Value
Energy [GeV]	2.3
rms Energy Spread [%]	0.5
Charge [pC]	200
rms Bunch Length [fs]	10
Geometric Emittance [nm-rad]	0.3
Undulator Period [cm]	2.78
Undulator K value	2.6
Resonant Wavelength [nm]	3.0
Resonant Photon Energy [eV]	413
Average Beta in Undulator [m]	1.5
FEL Rho Parameter	0.005
1d FEL Gain Length [m]	0.245
Eta: 3d beam quality reduction term	2.44
3d FEL Gain Length [m]	0.84
3d FEL Saturation Length [m]	16.4
3d Saturated Peak Power [GW]	32.4

DESIGN OPTIMIZATION FOR AN X-RAY FREE ELECTRON LASER DRIVEN BY SLAC LINAC^{*}

Ming Xie, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

Confidential and Proprietary Information of TAU SYSTEMS, Inc.

Summary

- accessible
- Impressive recent progress
 - demonstration of PWFA with both electron and proton bunches (Facet, AWAKE)
 - staging of LWFA PWFA (HZDR and others)
 - injection of RF accel. bunch into LWFA (Tsinghua)
 - >24h stable LWFA operation with ML (Des)
 - LWFA-driven FEL @ 27nm (SIOM)
 - >10 GeV, ~500s pC by nanoparticle assisted LPWFA (UT Austin)
- How to optimize emittance, energy spread, reproducibility simultaneously? •
- What is the most promising laser-driver?

Wakefield Accelerators hold a huge potential to make accelerators and light sources ubiquitous and

- Scientist: LWFA, Laser-based x-ray generation, XFELs, beam lines, and diagnostics Experimental: Postdoc/Staff Scientist (jun./sen)
- Laser Scientists/Engineers/Technicians: ultrahigh intensity lasers, high average power lasers, spatio-temporal pulse control, ML, control systems Staff Scientist (jun./sen.)
- Control systems engineer: lasers and/or accelerators
- XFEL applications in structural biology, macromolecular chemistry: single particle imaging, serial femtosecond chrystallography, ...
- Industry competitive salary (US), unlimited contract

Open Positions

