

ECR ion sources (ECRIS) for high-intensity heavy ion beams

Hongwei Zhao

Institute of Modern Physics (IMP), CAS, 730000, Lanzhou, China

LINAC'22, Aug. 28~Sept.02, 2022, Liverpool, UK

Worldwide high performance ECRIS development

Recent ECRIS development at IMP

Next generation ECRIS

LIVERPOOL

Worldwide heavy ion linacs need high-intensity highly-charged ECRIS

High-intensity highly-charged ECRIS

the shall be the

LIVERPOOL

Worldwide High Performance ECRIS Development: LBNL VENUS

- Continuous development on high intensity highly charged ion beams production
- Routine operation with highly charged ion beams

(Quoteu currents are in unit of $e\mu A$)			
	≤2015	> 2015	
¹⁶ O ⁶⁺	2850	4750	
O^{7+}	850	1900	
$^{40}Ar^{12+}$	860	1060	
Ar^{16+}	270	525	
Ar^{17+}	37	120	
Ar^{18+}	1	4	
⁷⁸ Kr ¹⁸⁺		⁸⁴ Kr 770	
Kr^{23+}	88	420	
Kr^{28+}	25	100	
Kr ³²⁺		7	
129 Xe ²⁷⁺	400	705	
Xe ³⁸⁺	7	26	Record
Xe ⁴⁵⁺		0.8	beam
¹⁹⁷ Au ⁴⁷⁺	4	$^{197}\mathrm{Au}^{51+}$ 5	intensities
Au^{52+}	0.8	4.7	
Au ⁵⁸⁺		0.6	
²⁰⁹ Bi ⁴⁵⁺	18	63	
Bi^{50+}	5.3	27	
Bi^{55+}		7.2	
Bi ⁵⁹⁺		0.7	
²³⁸ U ³³⁺	450		
U ³⁶⁺	220		

(Quoted aurouts and in unit of aut)

LIVERPOOL

Worldwide High Performance ECRIS Development: RIKEN SCECRIS

Worldwide High Performance ECRIS Development: FRIB SCECRIS

Courtesy of Haitao Ren@ICIS2021

- FRIB SCECRIS in position with 100% design operation fields
- First plasma at 18 GHz tested (2022)
- First plasma at 28 GHz scheduled at early 2023

Worldwide High Performance ECRIS Development: GANIL ASTERICS

- Fully superconducting ECR ion source@28 GHz
- Typical beams: 15 pµA Ca¹¹⁺, ≥5 pµA U³⁴⁺
- Potential: Ion source on a 70 kV platform
- Project period: 2023~2028

Courtesy of T. Thuillier@LPSC

LIVERPOOL

ECRIS Development at IMP

ECRIS Development at IMP: Beam intensity evolution

LINAC2022

LIVERPOOL

ECRIS Development at IMP: Technical advancement

LINAC2O22

LIVERPOOL

Record beam intensities and long-term operation by SECRAL -II

INAC2022

LIVERPOOL

Ion	SECRAL
Beam	(еµА)
	(2015-2019)
¹⁶ O ⁶⁺	6700
40Ar12+	1420
40Ar ¹⁶⁺	620
40Ar ¹⁸⁺	15
⁷⁸ Kr ¹⁸⁺	1030
⁷⁸ Kr ²⁸⁺	146
Xe ²⁶⁺	1100
Xe ³⁰⁺	365
Xe ⁴²⁺	16
²⁰⁹ Bi ³¹⁺	680
²⁰⁹ Bi ⁴¹⁺	100
238U33+	450
$^{238}U^{35+}$	315

H. W. Zhao, LINAC'22, Liverpool 12

Next Generation ECRIS: Magnet structure

LIVERPOOL

The world first 4th generation ECR ion source FECR at IMP

TIMP

45 GHz Microwave Coupling

FECR key parameters

Microwave	45 GHz/20 kW
Magnet conductor	Nb ₃ Sn
Axial fields (T)	6.5/1.0/3.5
Sextupole field (T)	3.8@r=75 mm
Maximum field (T)	11.8 T
Maximum stress (MPa)	150
Magnet bore (mm)	>Ø160
Stored energy (MJ)	1.6
Extraction (kV)	50
Typical beam	1.0 emA U ³⁵⁺

- Beams and intensities expected from FECR

- 3-5 times higher than existing record beam intensities

¹²⁹ Xe ³⁰⁺	>1000 µA
¹²⁹ Xe ⁴⁵⁺	> 50 µA
²⁰⁹ Bi ³¹⁺	>1000 µA
²⁰⁹ Bi ⁵⁵⁺	> 50 µA
²³⁸ U ³⁵⁺	>1000 µA
$^{238}U^{41+}$	> 200 µA
²³⁸ U ⁵⁶⁺	> 30 µA

LIVERPOOL

FECR Nb₃Sn magnet

FECR Nb₃Sn magnet development

From prototyping to operational machine (2016-2022)

To demonstrate 80~85% of FECR coldmass performance

Operational FECR Nb₃Sn magnet

FECR Nb₃Sn magnet : Prototyping sextupole coil

Development of prototyping ¹/₂-sized sextupole coil

INAC2022

LIVERPOOL

Prepared Coil

- Mechanical mapping
- Detailed Q/A

FECR Nb₃Sn magnet : ¹/₂-sized prototype coldmass assembly

Sextupole pre-assembly

Sextupole in collars

Sextupole & solenoids

Load pad and wiring

Instrumentation in Pizzabox

Axial preload with pistons

Radial preload with bladder & keys

FECR Nb3Sn magnet : ¹/₂-sized prototype coldmass test

Sext. Coils Ramping Tests

Technical challenges

In a start start

LIVERPOOL

- Precise installation and stress control
- Reliable active quench protection system
- >1.0 kV quench voltage circuit
- Strong Flux Jump interference
- Sextupole degradation reason

Test results

- 8 rounds energizing tests of the ½ prototype coldmass
- The sextupole quenched at 70%-90%, sextupole+one solenoid reached 77% of design current.
- 2 of the 6 sextupole coils turned out to have performance degradation or minor damage.
- Learned a lot of experiences and lessons

FECR Nb3Sn magnet : Full-sized coldmass

Full-sized sextupole coil reached 100% of designed current

- Full-sized coldmass almost ready for test
- Quench protection remains challenging

- High-intensity heavy ion linac needs high-intensity highly-charged ECRIS.
- Development trend of high-intensity highly-charged ECRIS towards higher RF frequency, higher RF power, higher confinement magnetic field, the 3rd and 4th Gen. ECRIS, which means higher cost and more technical challenge. Breakthrough needs new ideas and new technology.
- Development of the 3rd Gen. ECRIS has demonstrated very good performance with higher charge state, higher beam intensity and good long-term reliability.
- The next generation (4th Gen.) high-intensity highly-charged ECRIS is under development. IMP 45 GHz FECR Nb₃Sn magnet almost ready for cryogenic energizing. The FECR first beam commissioning could be in Feb. 2023.

Thanks to my colleague Liangting Sun for preparing many slides !

Thanks for all those progress and slides from LBNL VENUS, RIKEN SCECRIS, FRIB SCECRIS, GANIL ASTERICS.

Thank you for your attention !