北 Fermilab

U.S. DEPARTMENT OF

ENERGY
Office of Science

FINDING BEAM LOSS LOCATIONS AT PIP2IT ACCELERATOR WITH OSCILLATING DIPOLE CORRECTORS

Alexander "Sasha" Shemyakin
LINAC'22, poster TUPORI25
30 August 2022

PIP2IT

- PIP-II Injector Test (PIP2IT) is an H- ion linac to test critical elements of the front end of the PIP-II accelerator currently under construction at Fermilab.
- Was commissioned in several stages in 2014-2021
- Final parameters: $16 \mathrm{MeV} \times 2 \mathrm{~mA} \times 0.55 \mathrm{~ms} \times 20 \mathrm{~Hz}$ with an aperiodic bunch structure
- Comparison of beam currents read before and after cryomodules tells how much beam is lost inside
- This report is about an attempt to locate the loss

$L E B T=$ Low Energy Beam Transport; RFQ = Radio Frequency Quadrupole; MEBT = Medium Energy Beam Transport; HWR = Half-Wave Resonator; SSR1=Single Spoke Resonator; HEBT = High Energy Beam Transport

Method

- Move the beam with two dipole correctors and record changes in the BPM sum (intensity) signals
- Usually, a beam loss is associated with a strong dependence of the passing current on the beam position
- Optimum solution: excite trajectory as a travelling wave
- Beam moves around the canonical phase circle in time and space
- Amplitude everywhere is proportional to the beam rms size
- Phase in time, $\varphi_{1}(z)$, is determined by betatron phase advance $\varphi(z), \varphi_{1}(z)=\varphi(z)+\varphi_{x}$

Corrector currents change pulse-to-pulse pulse in
 sinusoidal manner. Phase shift between s^{\prime} waveforms $\varphi_{t}=\pi+\varphi_{x}$; amplitudes are related as $\theta_{2} \sqrt{\beta_{x 2}}=\theta_{1} \sqrt{\beta_{x 1}}$.
φ_{x} - betatron phase advance between correctors
$\beta_{x i}$ - beta function in correctors

$$
x_{0}(z, t)=\theta_{1} \sqrt{\beta_{x}(z) \beta_{x 1}} \sin \varphi_{x} \sin \left(\omega t+\varphi_{1}(z)\right)
$$

Implementation at PIP2IT

- Change currents in a pair of correctors in MEBT pulse-to-pulse
- May oscillate X and Y at the same time at different frequencies
- Record X, Y, and intensity for each BPM
- BPM intensity differences $J_{i, k}=\frac{A_{i k k}}{I n t_{i}}-\frac{A_{i-1, k}}{I n t_{i-1}}$
- Int $_{i}$ - average intensity signal of BPM_{i}
- $A_{i, k}$ - deviation of intensity signal in pulse k
- Calculate Fourier components at driving frequencies

Response of the first HWR X BPM to oscillating of two corrector pairs (X, 40.1 points period, and Y, 33.4 points period) and the relevant part of its spectrum.

Analysis of position signals

- Fourier amplitudes: max shift of the beam
- proportional to the rms beam size; gives idea about the beam envelope
- Phases: betatron phase advance
- Results are reproducible with different pairs of correctors

Comparison of oscillation amplitudes and phases) of BPM in-plane positions in oscillation of different corrector pairs. The X2030 data are adjusted for the initial deflection amplitude (by $0.9 / 1.3$ in X / Y) and phase offset ($-0.1 /-0.8 \mathrm{rad}$ in $\mathrm{X} / \mathrm{Y})$. " s s " points show phases of differential intensities.

Analysis of differences between BPM intensity signals

- Fourier amplitudes: changes of the beam loss between two BPMs when the beam is moved by the position amplitude
- Phase: betatron phase in the loss location
- Known losses are clearly seen in expected locations
- In part, tested by inserting a scraper
- There is a stable loss signal in the middle of HWR cryomodule (with some difficulties of interpretation - see poster TUPORI25)

Scraping of 6.4% of the beam current by inserting a scraper is clearly seen on differential losses induced by oscillation of Y2030 correctors. 401 points.

