

Status and Beam Commissioning of the RAON Superconducting Linac M. KWON on behalf of RISP IBS, Daejeon, Korea

August 30, 2022 Liverpool, UK

001.	RAON Overview		
002.	Accelerator Systems		
003.	Beam Commissioning Status		
004.	Summary and Outlook		

Part 1.

RAON Overview

RAON Layout

Science Goal of RAON

• **Future Extension**

RAON

Accelerator complex

ISOL + In-Flight Fragmentation

Origin of Matter

- Nuclear Astrophysics
- Nuclear Matter
- Super Heavy Element Search
- High-precision Mass Measurement

Properties of Exotic Nuclei

- Nuclear Structure
- Electric Dipole Moment and Symmetry
- Nuclear Theory
- Hyperfine Structure Study

Applied Science

- Bio-Medical Science
- Material Science
- Neutron Science

RIB production at RAON

	KoBRA	ISOL	IF Separator
Driver	SCL3(ECR/ISOL)	Cyclotron	SCL3(ECR/ISOL)->SCL2
(Post) Acceleration		SCL3 or SCL3->SCL2	
Production Mechanism	Direct reactions Multi Nucleon Transfer	P induced U fission	PF, U fission
RIB Energy	< a few tens of MeV/u	> a few of keV/u	< a hundreds of MeV/u

RAON will provide access to unexplored regions of the nuclear chart

- RI beam commissioning using SiC target (Dec 2022)

과막연구원

Institute for Basic Science

ISOL system

- ISOL beam lines including sub-systems are machine commissioned in 2021
 - RI beam commissioning using SiC target (Dec 2022)

지 중이는 Rare

ISOL SIB commissioning

ISOL SIB commissioning

A/q spectrum and the present resolving power(preliminary)

Momentum dispersion of the A/q magnet: 1.244 m Beam size in $2\sigma \sim \pm 5$ mm (from the slit width dependence of beam current) \rightarrow Resolving power ~ 250 (2 σ)

Our tuning is not finalized.

We may be able to obtain much higher resolving power (~400 in (2 σ)) with careful tuning.

ISOL RI Beam

Pre-Separator

(m/δm

~ 1,000)

Post linac

(10 keV/u.

133Cs27+

A/q Separator

(m/δm

~ 250)

ISOL tunnel

Quadrupole doublet

Rare Isotope Science Project

Cyclotron (35~70MeV, proton) Target IS (20 keV, ¹³³Cs¹⁺) Efficiency~30%

Target Ion Source(22.4)

- Sn beam extraction using RILIS and transports to A/q separator

Cyclotron ready (22.8) then

RFQ Cooler

 $(> 1x10^{8})$

ions/bunch)

- needs to finalized interface between Cyclotron and ISOL
- SiC to be used for Na isotopes(e.g. ²⁴Na~10⁶⁻⁸pps/1kW@70MeV) on Dec 2022

EBIS

(>15% Cs²⁷⁺

A/q<6)

- SiC for Al isotopes on 2023: ^{24-26m}Al beam extraction using RILIS and transports to MMS and CLS(e.g. ²⁰⁻²⁴Na, ²²⁻²³Mg, ²⁴⁻²⁶Al and ⁸⁻⁹Li)
- UCx begin to employ on 2025

Exp. Systems

Institute for Basic Science

ISOL system installed in 2021 and RI beam test on 2022 & All Exp. Systems are to be installed by 2022 and machine commissioned

Part 2.

Accelerator Systems

Simple Diagram of RAON SRF Accelerator

RIUMF & Fermilab

RRIKEN

RACON Rare isotope Accelerator complex for

SCL3 \rightarrow installation done on 2021 & commissioning on Oct 2022

RAON Injector System

SC ECRIS

RFQ

- Two ECR-IS on high voltage platforms
 - 14.5 GHz ECR ion source
 - 28 GHz superconducting ECR ion source
- LEBT (E = 10 keV/u)
 - 10 keV/u, Dual bending magnet
 - Chopper & Electrostatic quads, Instrumentation
- RFQ (E = 500 keV/u)
 - 81.25 MHz, Transmission Eff. ~98%
 - CW RF Power 94 kW (SSPA: 150 kW)
- MEBT (E = 500 keV/u)
 - Four RF bunchers (SSPA: 20, 15, 4×2 kW)
 - Simple quadrupole magnets, Instrumentation

MEBT

Ar⁸⁺ 10uA @ Beam Viewer('21)

RFQ and MEBT

Institute for Basic Science

Rare Isotope Science Project

SRF Cavity Development

On-site (Shin-Dong) test facility

- 1 onsite 3 VT pits and 3 cavities per pit, 3 HT bunkers
- 1 offsite (15 Km from site) 2 VT pits and 2 cavities per pit
- Cover all RAON cavities QWR (82.125 MHz), HWR (162.5 MHz) and SSR1 & 2 (325 MHz)

SRF Cavity Development-QWR

MOPOPA20 by Yoochul Jung MOPOGE24 by Heetae Kim

SRF Cavity Development-HWR

SRF Cavity Development

Assembly of the HWR Cryo-module

Cavity String

Particle count inside cavity "0"

With cryogenic piping

Top loading to cryostat

Vacuum leak rate

HWR B type

Thermal load of the HWR Cryo-module

No. of Cryomodule

TUPOGE06 by Youngkwon Kim THPOPA18 by Hyunik Kim

THPOPA17 by H. Jang

SCL3 and Cryo-plant Installation completed 2021 & Beam commissioning starts from Oct, 2022

-Cryomodule(CM) & Warm section is clean assembled in the clean booth@tunnel
-Total Particle counts(size=0.5um above/10 mins) were less than 30 counts

SCL3 Cryogenic system

SCL3 structure

* ZAON

CMs and Valve boxes @ tunnel

CMs and Valve boxes Control GUI

□ Plant configuration

- SCL3 cryoplant (4.2 kW @4.5K) for SCL3
- SCL2 cryoplant (13.5 kW @ 4.5 K) for SCL2
- Two plants connected to the same distribution box. If one plant down, the other can maintain cold condition for SCL 2&3 together or only one.

Cold box

Warm compressors

LHe distribution box

Plant status

- Mechanical installation and commissioning was done in July, 2022
- Cold box was connected to the Main distribution box
- First cool down begins shortly

Part 3.

Beam Commissioning Status

Measurements for commissioning

- MEBT Bunchers RF set-point (phase scan, BPM)
- Beam energy (phase scan, TOF with BPMs)
- Beam current, transmission (ACCT, FC)
- Orbit correction (BPM / Wirescanner & dipole steerer)
- Beam transverse profile (wirescanner)
- Transverse matching (wirescanner)
- Beam emittance (X and Y) : Allison scanners, Beam size fitting, quad scan methods

• Physics applications for commissioning

- BIPAM (Beam Input Parameters And Matching)
- CAPS (Cavity Amplitude and Phase Scan)
- Orbit correction application
- Emittance data analysis & wirescanner data analysis

Low Energy Beam Transport (LEBT)

- Beam parameter measurements (Allison scanners, wirescanners)
 - measuring initial beam parameters (fitting beam sizes of wirescanners)
 - controlling optics when needed
 - do matching to RFQ

Rare isotope Accelerator complex for

RAON

- Emittance measurement (Allison scanner, quad scan
- Beams: Ar9+ (~30µA), Ar8+ (~47µA)

중이온가속기건설구죽사업는 Rare Isotope Science Project

- orbit correction
- beam tracking (TRACK, DYNAC codes)

- RFQ RF set-point (Ar9+, Ar8+):
 - beam transmission measured using MEBT ACCT2
 - Fitting against model
 - * Measured transmission = 94 % (simulation = 98%)
- Cavity RF power: 51.5 kW (Design ~39.1 kW (20% margin))

MEBT beam parameter measurements

- using beam sizes from wirescanners
- measure initial beam emittances & parameters
- can do matching to SCL3

MEBT buncher RF set-point

- using phase scan technique
- determines RF amplitude & phase
- RF set-points of 4 bunchers obtained
- Beam energy is 514 keV/u (design 507 keV/u)

Injector Transmission

LINAC2022 LIVERPOOL

- 10% beam duty operation: 96 minutes, 10Hz, 10msec
 - * Injector transmission > 94%

Accelerator complex for

- MEBT beam emittance measurement based on quad scan

MEBT quad scan emittance measurement

Bunch Length Measurement

Fabrication of Stripline type Fast Faraday Cup

elerator complex for

<u>Frequency component < 3 GHz</u> With 0.13 ns bunch length

- Semi-rigid SMA cable in vacuum
- PEEK insulator
- Ta plate in front of FFC
- Bolting at irregular position

<u>Amplifier (43 dB Gain)</u> Bandwidth 300 kHz ~ 14 GHz

Oscilloscope (4 GHz, 25 GSPS)

- Ar 8+, 50 uA, at the end of MEBT (4 bunchers)
- 100 μs macro pulse commissioning beam
- Expected peak amplitude was ~ 4 mV
- RF amplifier and oscilloscope prepared, considering frequency component

Measured bunch Length at MEBT

Rare isotope Accelerator complex for

- Measured single bunch length was $0.297 ns (1\sigma)$ with Gaussian fit.
- Shows good signal repeatability for measuring bunch trains.
- Overlapped signal of 325 bunches in 4 us is shown.
- Bunching and debunching was observed by rebuncher in MEBT.

N Accelerator complex for ON-line experiments **SRF Linac Commissioning Plan**

Measurements to perform

- QWR/HWR RF set-point (phase scan, BPM)
- Beam energy (phase scan, TOF with BPMs)
- Beam current, transmission (ACCT, FC)
- Orbit correction (BPM & dipole steerer)
- Beam transverse profile (wirescanner)
- Transverse matching (wirescanner)
- Beam emittance (X and Y) : beam size fitting, quad scan
- Physics applications for commissioning
 - BIPAM (Beam Input Parameters And Matching)
 - CAPS (Cavity Amplitude and Phase Scan)
 - Orbit correction application
 - Emittance data analysis & wirescanner data analysis

Available Diagnostics in QWR Section

• Halo Collimators(aperture 36 mm) installed at beam boxes

Rare isotope Accelerator complex for

CAPS (Phase Scan Tool, Cavity RF Setpoint)

Phase scan with BPMs (Time of Flight measurement)

Rare isotope Accelerator complex for

BIPAM (Beam Parameter & Matching)

• 4 wirescanners are installed in MEBT and in the SCL3.

Rare isotope Accelerator complex for

 With 4 wirescanners, beam parameters are measured and used to match to the following section.

Part 4.

Summary & Outlook

- RAON installation and system integration was successfully done :
 - Progress rate is more than 95% for Phase 1
- Injector beam commissioning was carried out, achieving machine setting and key measurements :
 - measured beam parameters (energy, emittance, Twiss parameters, beam sizes etc)
 - capable of controlling LEBT and MEBT beam optics freely as needed
 - achieved beam transmission of 95% max (routinely > 90%)
 - machine verification including diagnostics devices
- Commissioning team is ready for the superconducting linac beam commissioning this fall :
 - physics applications are ready and tested

- September : Cool-down of QWR/RF conditioning First Beam injection to first five modules
- October : Cool-down of HWR/RF conditioning Beam commissioning for QWR
- November : 2 K pumping for HWR section/RF conditioning
- December : 2 K stabilization for HWR section/RF conditioning
- January-March : Beam commissioning for whole SCL3

Thank You for Your Attention!