31st International Linear Accelerator Conference 2022 Sunday 28th August – Friday 2nd September 2022

Progress of Shanghai Hlgh repetitioN rate XFEL and Extreme light facility

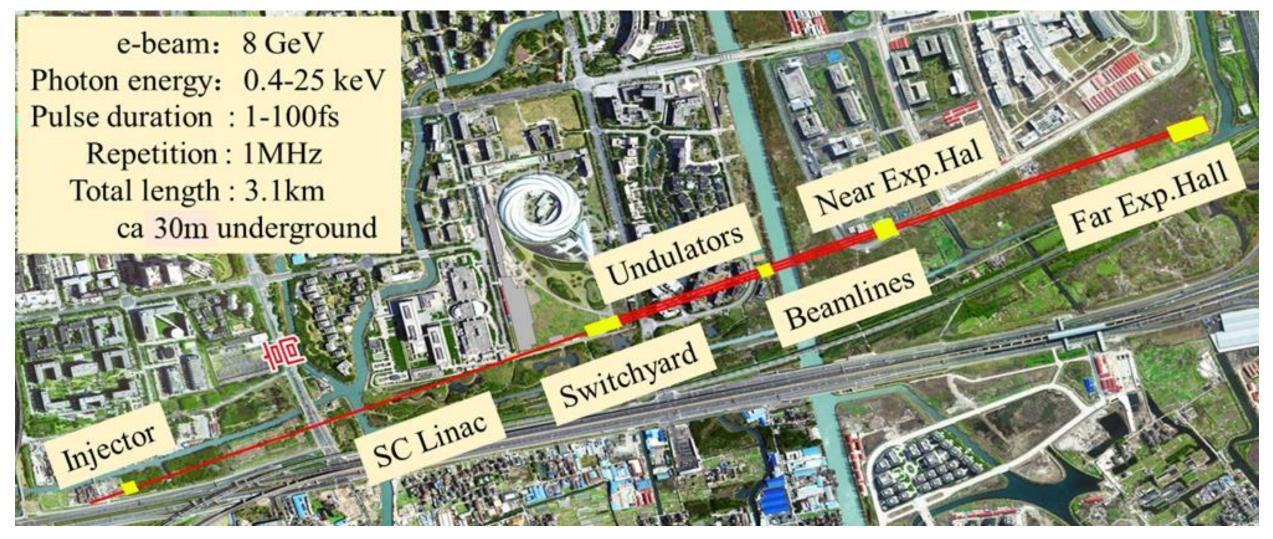
Bo Liu, for the SHINE team Shanghai Advanced Research Institute, CAS 2022.08.30

Outline

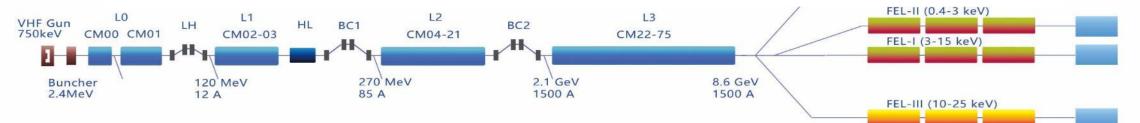
Introduction to the SHINE project Design and Layout R&D and Construction Progress Summary

SHINE — Shanghai Hard X-ray FEL Facility

Shanghai HIgh repetitioN rate XFEL and Extreme light facility (SHINE)


- SHINE is a high rep-rate XFEL facility, based on an 8 GeV CW SCRF linac, under development in Shanghai;
- This facility will be built in a 3.1 km long tunnel underground at Zhang-Jiang High Tech Park, across the SSRF campus;
- This XFEL facility has 3 undulator lines and 10 experimental stations in phase-I, and it can provide the XFEL radiation in the photon energy range of 0.4 -25 keV.
- This XFEL project was approved by the central government in 2017, and its groundbreaking was made in April, 2018, aiming at lasing in 2025.

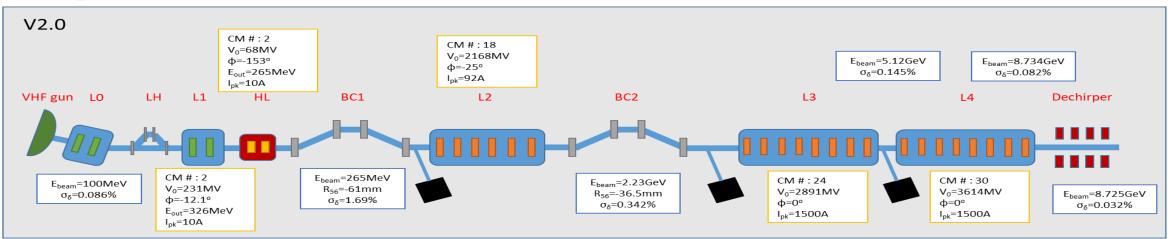
This facility will be developed by Shanghai-Tech Univ., SARI and SIOM of CAS.



SHINE: General Parameters and Location

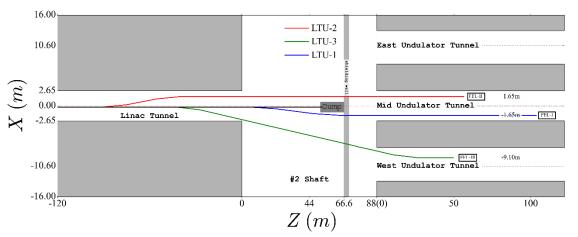
SHINE: A high rep-rate XFEL based on SCRF

> XFEL Facility +100 PW Laser Facility


	Nominal
Beam energy/GeV	8.0
Bunch charge/pC	100
Max rep-rate/MHz	1
Beam power/MW	0.8
Photon energy/keV	0.4-25
Pulse length/fs	20-50
Peak brightness	5×10^{32}
Average brightness	5×10^{25}
Total facility length/km	3.1
Tunnel diameter/m	5.9
2K Cryogenic power/kW	12
RF Power/MW	2.28

FEL Line	Objective
FEL-I	
Photon energy/keV	3-15
Photon number per pulse @12.4keV	>10 ¹¹
Max pulse repetition rate/MHz	1
FEL-II	
Photon energy/keV	0.4-3
Photon number per pulse @1.24keV	>10 ¹³
Max pulse repetition rate/MHz	1
FEL-III	
Photon energy/keV	10-25
Photon number per pulse @15keV	>10 ¹⁰
Max pulse repetition rate/MHz	1

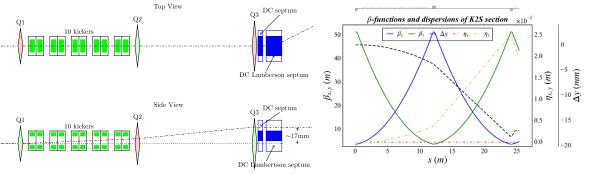
- Barris and a start of


Layout of the SHINE accelerator

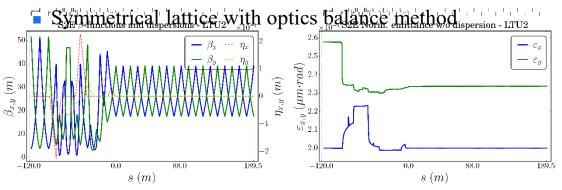
Injector Parameters	Value		No. of CM's	Avail. Cavities	Powered. Cavities*	Gradient (MV/m)	Eout (MeV)	σ _z (mm)
Beam energy (MeV)	100	LO	1	8	7	16.3	100	1.15
Bunch charge (pC)	100	L1	2	16	15	14.8	326	1.15
3		HL	2	16	15	13.1	265	1.15
Normalized emittance (95%, um·rad)	0.4	BC1	-	-	-	-	265	0.13
Slice energy spread (10 ⁻⁴)*	0.1/0.5	L2	18	144	135	15.5	2229	0.13
····· ···· ···· ··· ··· ··· ··· ··· ··		BC2	-	-	-	-	2229	0.006
Bunch length, rms (mm)	1	L3	24	192	180	15.5	5120	0.006
Peak current (A)	12	L4	30	240	226	15.5	8734	0.006
		Dcp	-	-	-	-	8725	0.006
750kV V HF gun +Single cavity	+ 1.3G	Hz SCRF cry	yomodule	s: 75 + 3.	9GHz SCR	F cryom	odules:	

LINAC2022 LIVERPOOL

Beam Switchyard


One SRF Linac \rightarrow Three FEL Lines

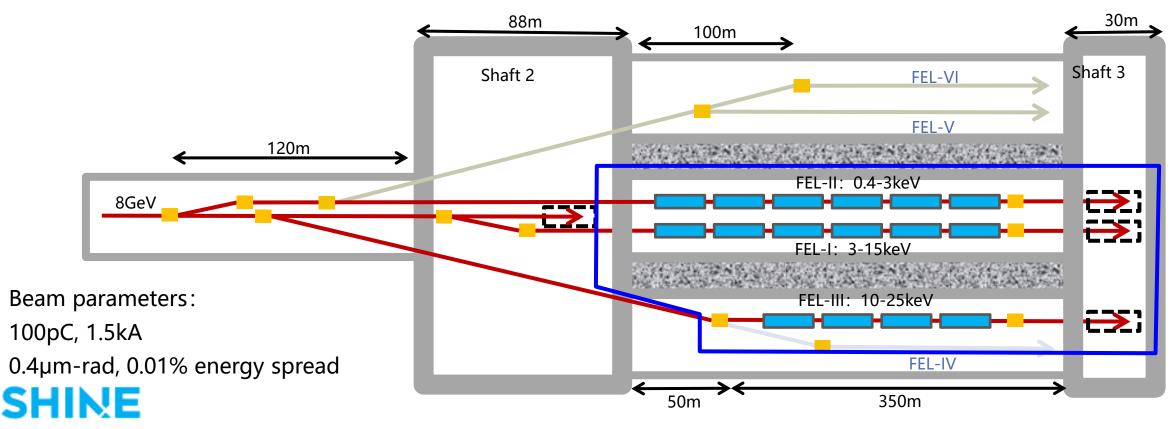
At least 3 LTU deflection branches and 1 straight dump line


- LTU-2: linac → FEL-II in Middle Undulator tunnel
 - 3.0° deflecting angle, +1.85m horizontal offset
- LTU-3: linac \rightarrow FEL-III in West Undulator tunnel
 - 3.6° deflecting angle, -8.90m horizontal offset
- LTU-1: linac \rightarrow FEL-I in Middle Undulator tunnel
 - 2.0° deflecting angle, -1.45m horizontal offset
- **LTD:** linac \rightarrow Dump in middle of #2 Shaft

Fast vertical kicker Set + DC Lamberson Septum

- Bunch-by-Bunch beam distribution of 1 MHz beam
- ~ 1 mrad kick angle, ~17 mm Y-offset @ Lamberson

Lattice design for minimizing CSR induced emittance growth


Undulator Layout and FEL Schemes

Three undulator beamlines to cover the photon energy range 0.4-25keV, external seeding and self-seeding schemes have been adopted for fully coherent FEL generation:

•FEL-I (3-15keV) : SASE 、self-seeding

•FEL-II (0.4-3keV) : EEHG/HGHG、 self-seeding

•FEL-III (10-25keV) : SASE、self-seeding

I TNAC₂

IVERPO

10 End-Stations @ SHINE facility

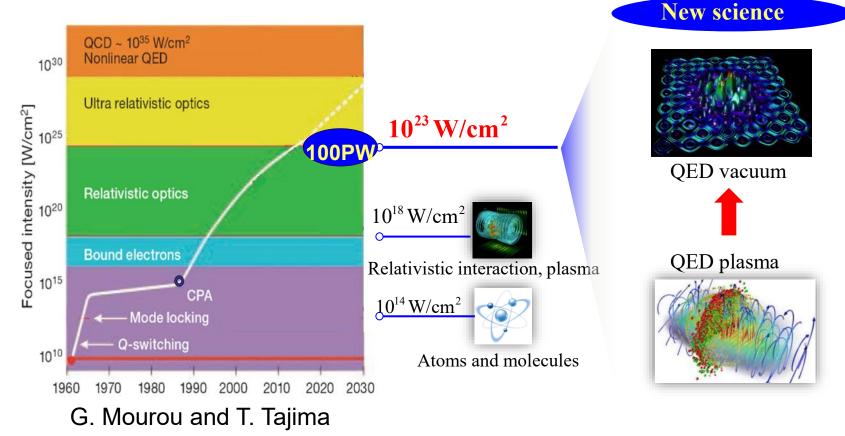
FEL-I Hard X-ray End-stations

- **HSS:** Hard X-ray Scattering and Spectroscopy
- **CDS:** Coherent Diffraction Endstation for Single Molecules and Particles
- **SEL:** Station of Extreme Light
- > XFEL + 100 PW Laser System

FEL-II Soft X-ray End-stations

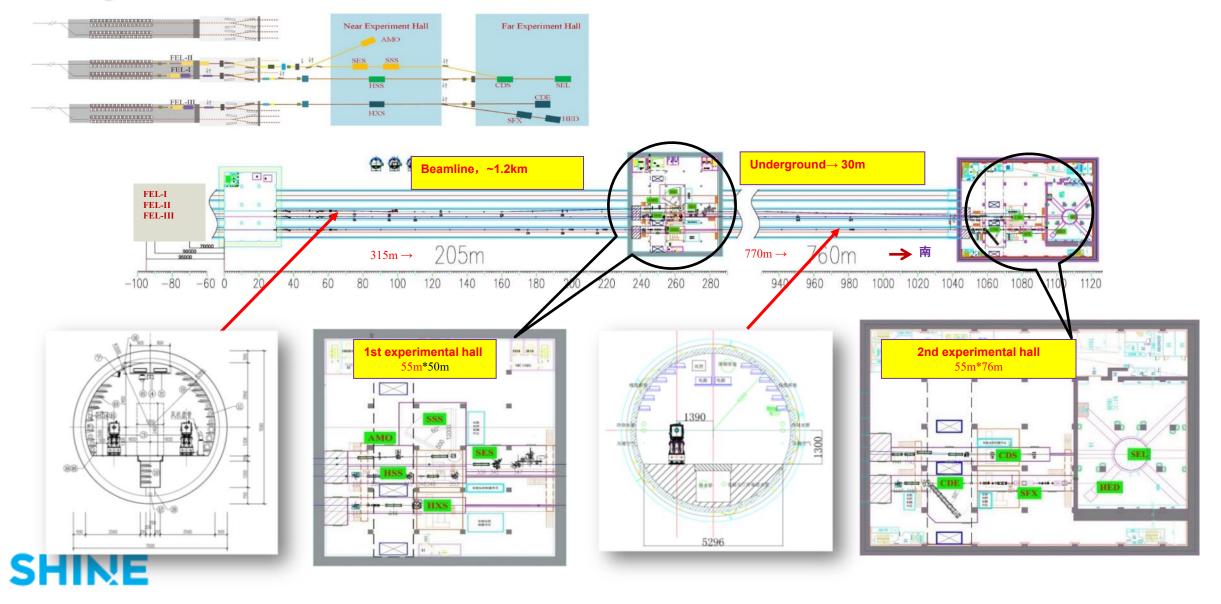
- **AMO:** Atomic, Molecular, and Optical Science
- **SES:** Spectrometer for Electronic Structure
- **SSS:** Soft X-ray Scattering and Spectroscopy

FEL-III Hard X-ray End-stations


- **HXS:** Hard X-ray Spectroscopy
- **SFX:** Serial Femtosecond Crystallography
- CDE: Coherent Diffraction Imaging
- **HED:** High Energy Density Science

LINAC2022 LIVERPOOL

SEL: XFEL + 100 PW Laser System


SHINE

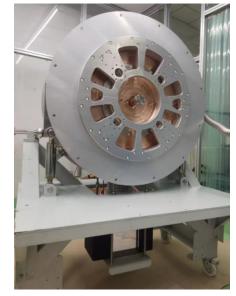
The marriage of optical laser pulse with an intensity of 10²³W/cm² and intense XFEL will potentially open the gate for investigating high field vacuum QED

Layout of Beamlines and End-stations

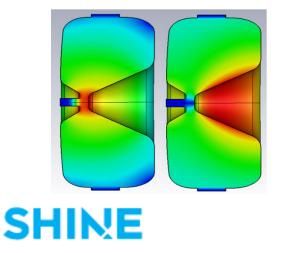
Comparison of world-wide high rep-rate XFEL

	European XFEL	LCLS-II	SHINE
Facility site	Hamburg, Germany	Stanford, USA	Shanghai, China
Facility length	~ 3.4km	~2.0km	~ 3.1km
Photon energy	0.5 ~ 24keV	0.2 ~ 5keV	0.4 ~ 25keV
E-beam energy	17.5GeV	4GeV	~ 8GeV
Rep. rate	3000×10 Hz	0.93MHz	1MHz
Beam current	~ 0.03mA	~ 0.1mA	~ 0.1mA
Budget	~1.5 billion euro	~1.045 billion USD	~ 10 billion RMB
Time schedule	2009-2018	2014-2022	2018-2025
tunnel	6-38m underground	Half-underground	30m underground
Mode	Macro Pulse	Continuous wave	Continuous wave
FEL lines	5 (3 initial)	2	6 (3 initial)

R&D and Construction Progress


- Groundbreaking was made on April 27, 2018. Construction of shafts is in good progress;
- Accelerator engineering design, technical infrastructure development, component prototyping and long-lead equipment procurements are underway;
- Beamline design optimization are being carried out, R&D of key optics component and Pixel array detector development are in progress;
- Technical and engineering design of high energy OPCPA, R&D of key laser technologies for SEL are in progress;

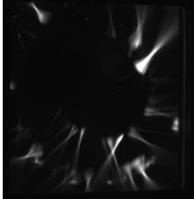
Development of the VHF Gun


The fabrication of the VHF electron gun developed by Tsinghua University has been completed.

Frequency	216.67 MHz
Cathode gradient	30 MV/m
Input power	90.4 kW
Maximum surface electric field	36.99 MV/m (2.5kilp)
Maximum surface power density	28.45 W/cm^2
Voltage	868 keV
Stored energy	2.24 J
Quality factor Q_0	33717
Shunt impedance	8.34 ΜΩ

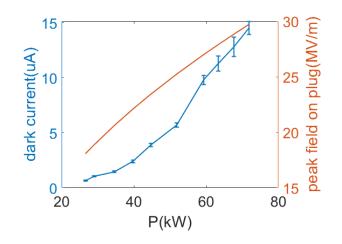
High power test has been done. CW 70kW power has been input into the gun with maximum temperature increase less than 40°C. Mechanical tuners have been successfully applied in gun detuning.

Courtesy Tsinghua University team

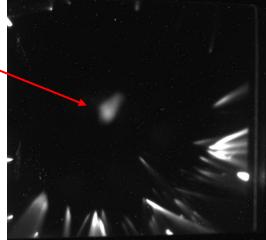


Development of the VHF Gun

Test beamline has been constructed. The designed maximum beam energy is ~30 MeV.



Dark current test


~14 uA@72 kW

SHINE

Photon-induced beam First beam

Beam energy is 788 keV measured by the dipole downstream the gun.

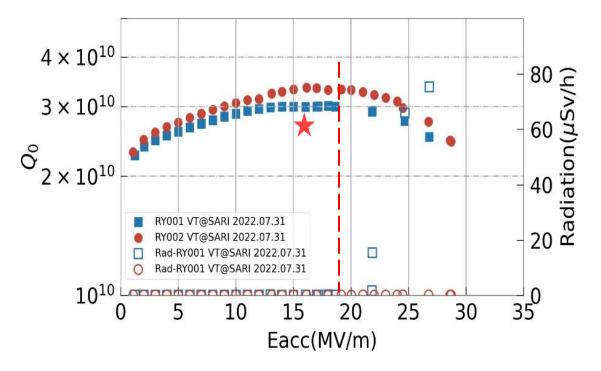
Courtesy Tsinghua University team

Development of the SHINE Cryomodule

- SHINE Linac consists of 75 1.3GHz cryomodules (CMs) for beam accelerating, and two 3.9GHz cryomodules for non-linear correction.
- The cryomodule design is based on the TESLA technology and refers to European XFEL and LCLS-II
- Prototypes & infrastructures built for R&D and production
- First standard 8-cavity (BCP refurbished) CM, RF tested in June 2022, has reached its main goal (>128 MV, >1.0E+10, <1 nA).</p>
- More standard 8-cavity (High Q) CMs, in preparation, include midT-baked and N-doped cavities.
- High-Q technologies (N-doping& midT-baking) have been achieved on 1.3 GHz 9-cell cavities.

CM with 8 BCP'ed cavities under testing

More details in: TH1PA01 Dr. Yiyong Liu's talk on Thursday


R&D on High-Q 9-cell cavities

 High-Q technologies (both N-doping& midT-baking) have been achieved on SHINE 1.3 GHz 9-cell cavities, with Q₀>2.7E+10 @16-21MV/m and max Eacc>25 MV/m in average, based on the new SHINE facilities co-built in Wuxi; and have been replicated by different companies, including RI and ZANON.

 4×10^{10} 3×10^{10} 0° SHINE spec 2×10^{10} HJ001 EP reset+300C VT@SARI 2022.01.12 HI003 EP reset+300C VT@PKU 2022.01.08 ||005 EP reset+3/60+EP10 VT@SARI 2022.04.10 H|006 EP reset+3/60+EP10 VT@SARI 2022.04.10 10^{10} 5 10 15 20 25 30 Eacc(MV/m)

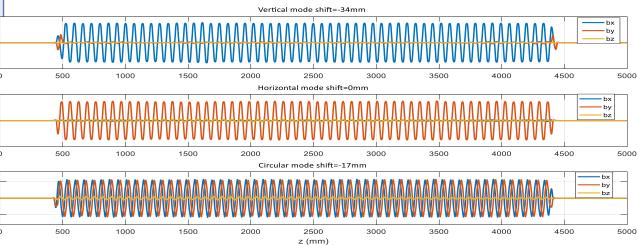
First 2 cavities produced by RI with SHINE High-Q recipe

Permanent Magnet Undulators

	FEL-I	FEL-II	
Туре	Planar	Planar	EPU
Periodic Length	26mm	Double period: 75 mm&55mm Normal period: 55mm	68 mm
Quantities	42	14/22	4
Segment Length	4.0 m	4.0 m	4.0 m
Number of Periods	152	71 for U55; 52 for U75	58
Maximum Field	1.02T	1.25T for U55 1.5T for U75	1.5 T for H.&V. Mode bx=by=1.06T @circular mode
Minimum Gap	vertical 7.2mm	vertical 10.2mm	vertical gap 3mm center area Ø7.2mm
Structure	Hybrid	Hybrid	APPLE-III

etic Field Distribution (T)

Aagn


Magnetic force cancellation (cancellation for Fx,Fy,Fz)

- Max load in Fy: before $-7t \sim +4t$ after $-2t \sim -2t$
- ➤ 4 center arrays APPLE-III
- ➤ 8 arrays for magnetic force cancellation

Magnetic performance

- bx/by peak field 1.5T @ plannar mode is achieved
- bx=by=1.06T @ circular mode is achieved

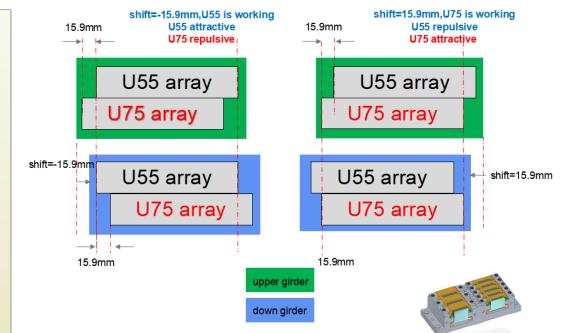
Prototype Plan: Start shimming, will be finished in Sep. 2022

Magnetic field distribution for different polarization

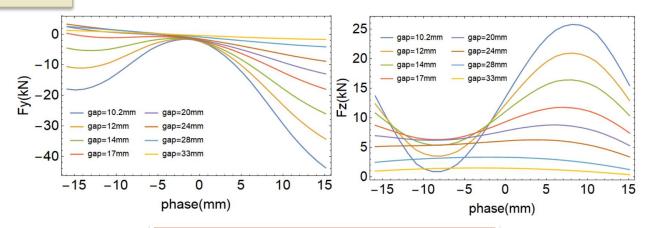
prototype EPU is in shimming

Permanent Magnet Undulators

PU Prototype U26 and U55&75


Planar Undulator U26

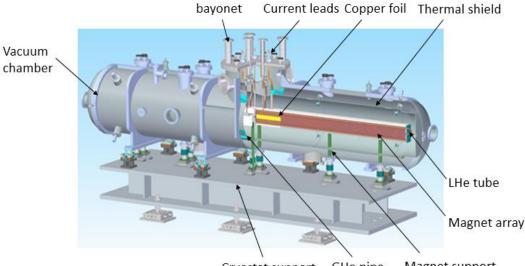
- ➢ 4 Four Servo Motors.
- > Precision gap control with accuracy $\pm 1\mu m$.
- Max Taper 0.3mm for 4m undulator.
- Hybrid magnetic structure: peak field 1.02T@7.2mm

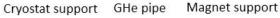

Double periods U55&75: similar design to U26

- Two periods arrays fixed on the same girder
- Switch 100mm between U55 arrays to U75 arrays in x-direction
- > An optimized phase delay 15.9mm from U55 to U75 in z-direction
- ➤ working logic: U55 gap open→switch x position to U75 center→switch shift from -15.9mm to 15.9mm→U75 gap close

Prototype: Start parts processing, will be finished in May. 2023

Total magnetic force in double period U55&75




Superconducting Undulator Prototype

- There are 504 horizontal racetrack coils with NbTi wire in one undulator.
- Five power supplies will be used, two for the end coils, three for the main coils including one for the "phase shifter" in the middle.
- There is no beam vaccum chamber.
- The thermal shield and the HTS leadings are cooled by 50K GHe, and the magnet is cooled by 4K LHe.
- The prototype has been assembled and will be tested in next two months.
- The magnetic fields will be measured by a Hall probe system with three Hall sensors, one temperature sensor and an optic system used to locate the 3D positions of the Hall sensors.

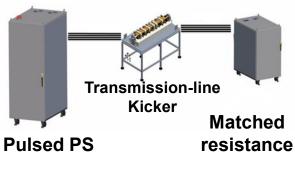
SHINE

Undulator Length	4.5 m
Period Length	16 mm
Magnetic Length	4 m
Pole Gap	5 mm
Beam Gap	4 mm
Peak Fields	0.68-1.58 T

Kicker Prototypes

Lumped-inductance Kicker

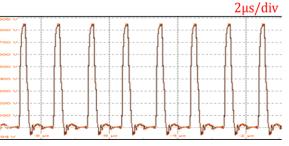
Key parameters of Lumped-inductance Kicker					
Beam energy	8 GeV	Bending angle	0.1 mrad		
Effective length	0.5 m	Max. Rep. rate	1 MHz		
Aperture(H)	10 mm	Field intensity	5.3 mT		
Aperture(V)	16 mm	Peak current	50 A		



500 n	s/div		 200ns/div
			K Induced voltage waveform

Transmission-line Kicker.

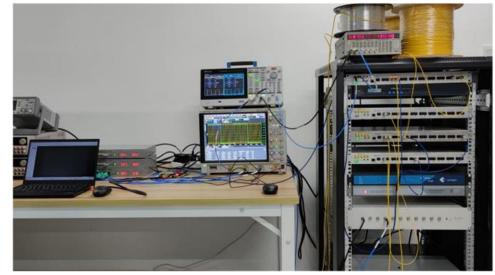
Key parameters of Transmission-line Kicker						
Beam energy	8 GeV	Bending angle	0.1 mrad			
Effective length	0.8 m	Max. Rep. rate	1 MHz			
Aperture(H)	25 mm	Field intensity	3.3 mT			
Aperture(V)	25 mm	Peak current	67 A			
LC section number	20	Kicker impedance	12.5 Ω			
Ceramic beampipe	Φ15 mm	LC parameter	50nH/320pF			


100ns/div

Magnetic field waveform

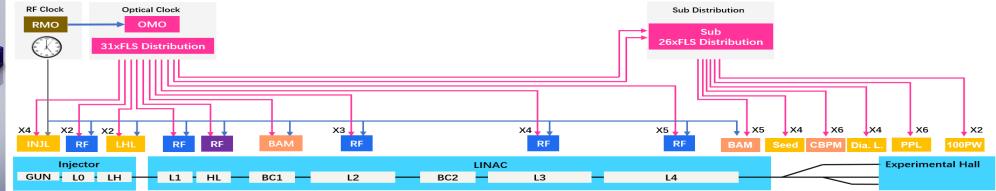
Induced voltage waveform

Development of the Timing System


- Precise distribution and synchronization of the 1.003086MHz timing signals over a long distance of about 3.1 km
- Two prototype systems were developed.
- The non-standard clock transmission was proposed and verified.
- Beam-synchronous trigger signal distribution
 - Jitter between the slave node output and reference signal <10ps
 - Jitter between slave nodes outputs <5ps
- Random-event trigger signal distribution

SHINE

Master Node and WR Switc	hs		
MPS Master Node	Synchronization Tim reference signal Grand		Beamlines & Experiment Stations
(hardwin	ed connection)	(GbE)	
			(Optical Fiber)
Injector WRS Level 2,3	SC Linac WRS Level 2,3	Switchyard WRS Level 2,3	Undulator WRS Level 2,3
WRS 1 WRS 2 ··· WRS N	WRS 1 WRS 2 ··· WRS N	WRS 1 WRS 2 ··· WRS N	WRS 1 WRS 2 ··· WRS N
L			
Injector	Super-Conducting Linac	Switchyard	Undulators
FANOUT Node FANOUT Node : FMC Node FMC Node	: FANOUT Node FANOUT Node : FMC Node FMC Node	: FANOUT Node : FMC Node FMC Node	; FANOUT Node ; FMC Node FMC Node
			(MPS Network)
Slave Nodes			(Control Network)



Development of the Synchronization System

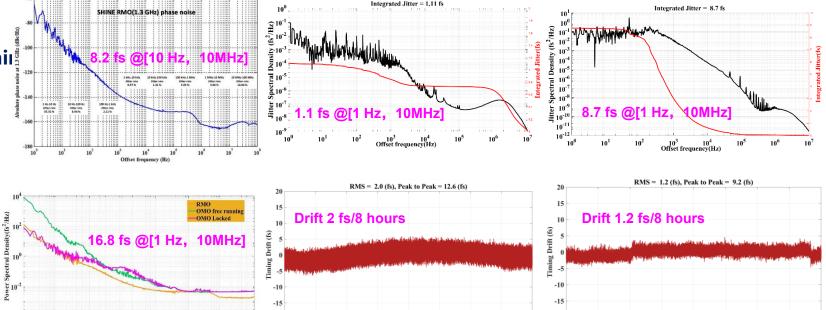
10

Offset Frequency (Hz

RF master oscillator (commercial, R&S)

• 8.2 fs rms jitter@[10Hz, 10MHz]

Optical master oscillator (commercial, Menhi


• 16.8 fs rms jitter of lock to RMO

31-port PMF splitter distribution

- Temperature-stabilized platform
- Fiber length stabilizer(BOC)
- 4 ns motorized optical delay Line
- 1.1 fs short-term rms jiter
- 2 fs long-term drift

Laser oscillator locking

- Two-color balanced optical cross-correlatior
- 8.7 fs short-term rms jiter
- 1.2 fs long-term drift

Time (hours)

2

4

Time (hours)

1U height stand alone structure based on an Zyng UltraScale+ MPSoC FPGA. Two FMC connectors support an four channel ADC board (14bits, 1GSPS) and a White Rabbit timing board.

-110

50

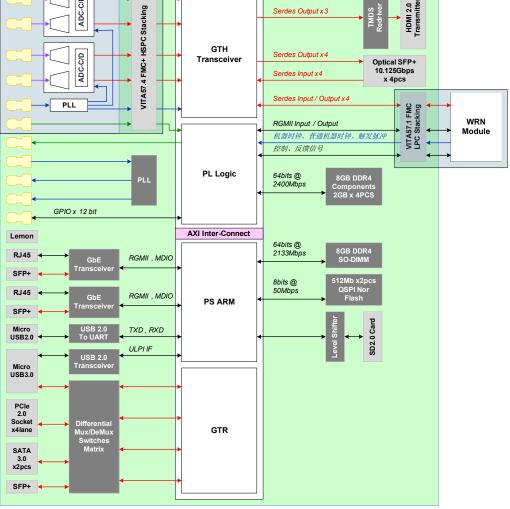
100

150 ANALOG INPUT FREQUENCY(MHz)

- BPM, cavity BPM, bunch charge, BAM, wire scanner, beam loss, and bunch length.
- A generic beam signal processor has been developed for SHINE, which is used for the measurement of stripline BPM, cold button
- **Development of the Beam Signal Processor** ĊD ADC-

- 1st

O 2nd

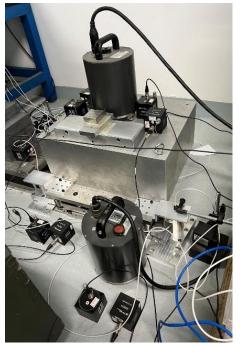

× 3rd

+ 4th * 5th

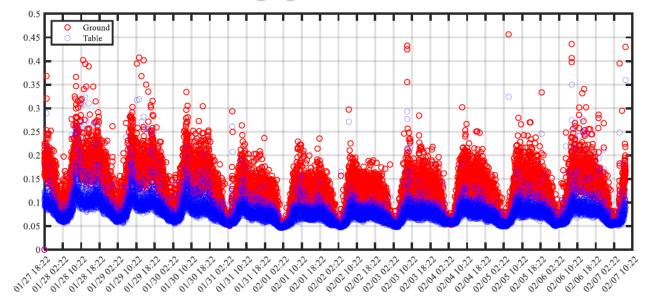
6th

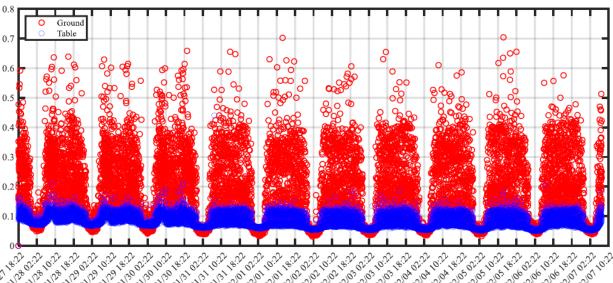
7th

⊽ 8th 9th


MPSoC

Active Vibration Isolation Prototype




BBA model

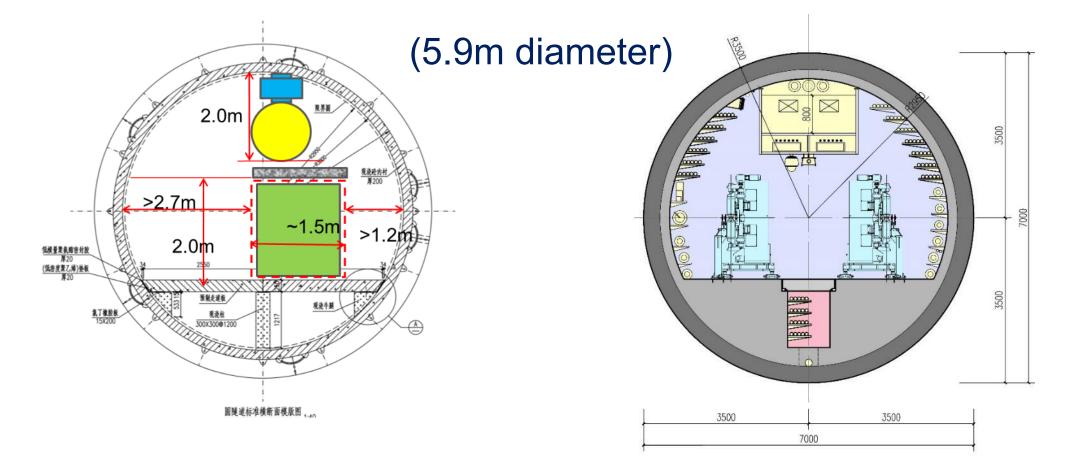
NE

Test of active vibration isolation prototype

- Goal: Vibration stability of quadrupole center (H/V, RMS, >1Hz) \leq 0.15um
- Ground vibration is much higher than 0.15um
- Active vibration isolation prototype is tested. Vibration of dummy load is reduced by at least 30% compared with ground vibration and can reach ≤0.15um.

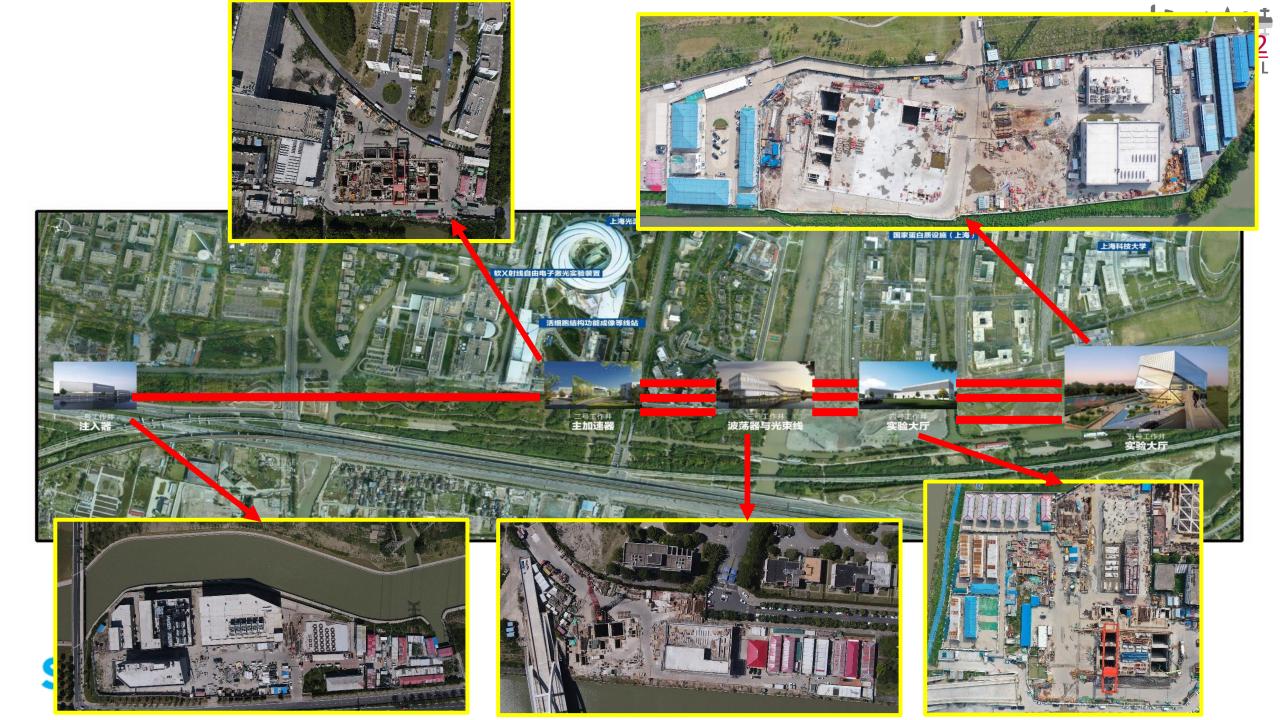
SHINE Cryo-plants

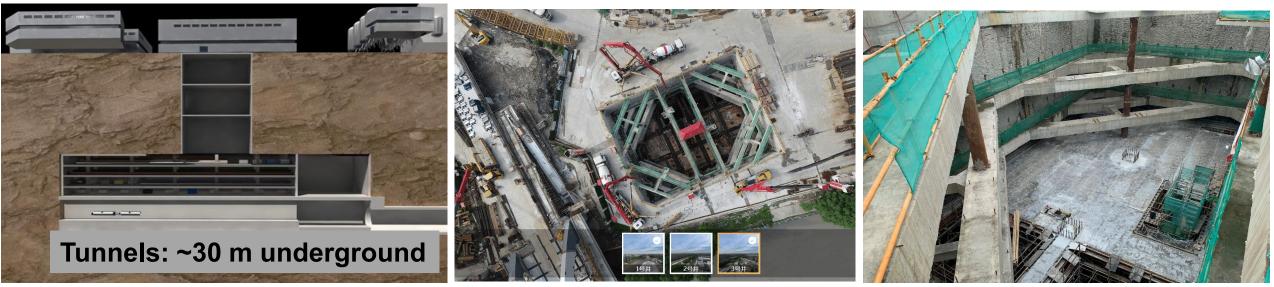
2 sets of 4kW@2K cyroplants (for SHINE main facility) Cryogenic multichannel transfer lines 1 set of **4kW@2K** cyroplant (for SHINE main facility) 1 set of **1kW@2K** cyroplant (for SHINE test facility)



SHINE Cryo-plants

Linac and FEL Undulator Tunnels


Left: cross section of the linac tunnelRight: cross section of undulator tunnel



Groundbreaking on April 27, 2018

Summary

- SHINE is a high rep-rate hard X-ray FEL facility being developed in Shanghai, consisting of an 8 GeV CW SCRF linac, a 100PW laser system, 3 phase-I undulator lines and 10 end-stations;
- This hard X-ray FEL project started its civil construction in April 2018, aiming to achieve the first XFEL lasing in 2025;
- R&Ds of several key technologies and key components are still ongoing.
- Technical and engineering design is almost frozen, and mass production of several key components is in progress.

Thanks for your Altention