

国家重大科技基础设施-加速器驱动嬗变研究装置

Status and Challenges of NbCu SRF Cavities for Superconducting Linac

Mengxin Xu IMP Linac Center Aug 30 2022

1. Introduction

2. Copper Niobium Cavity

3. Summary and Outlook

Given Service and Service And

Main structure

- Superconducting drive linac
 - □ 500MeV, 5mA
- □ Spallation target
 - **Pb-Bi**, 2.5MW
- Subcritical reactor
 - **10MW**
- Total Budget about 400M \$
 Schedule:2021~2027

Introduction

Introduction

CiADS Linac Design

Sections	Frequency(MHz)	beta	Cryomodules	Cavities	Solenoids
HWR010	162.5	0.1	1	9	9
HWR019	162.5	0.19	4	24	24
HWR040	325	0.4	10	60	20
Ellipt062	650	0.62	10	30	0
Ellipt082	650	0.82	7	28	0
Totals			32	151	53

Introduction

Cavities Parameters

Parameters	Unit	HWR010	HWR019	HWR040	Elliptical062-6cell	Elliptical082-5cell
Beta		0.10	0.19	0.40	0.62	0.82
frequency	MHz	162.50	162.50	325.00	650.00	650.00
Beam Aperture	mm	40.00	40.00	50.00	100.00	100.00
Leff	m	0.185	0.351	0.369	0.821	0.896
L _{ftof} (flange to flange)	m	0.2100	0.4700	0.4500	1.2200	1.2200
Ep/Eacc		5.71	4.24	3.83	2.78	2.14
Bp/Eacc	mT/MV/m	12.52	6.21	7.35	4.83	4.04
Ep(operation)	MV/m	26.00	28.00	28.00	29.00	29.00
Вр @Ер	mT	57.01	41.01	53.73	50.38	54.75
TTF		0.83	0.8871	0.82	0.73	0.73
Veff@Ep	[MV]	0.84	2.32	2.70	8.56	12.15
V0 @Ep	[MV]	1.01	2.61	3.29	11.73	16.64
Eacc @Ep	[MV/m]	4.55	6.60	7.31	10.43	13.55
U @Ep	J	4.54	15.68	13.02	54.34	73.61
G	Ohm	28.00	66.43	106.80	188.00	229.00
R/Q	Ohm	158.33	337.22	244.60	330.00	501.00
			1			

Reliability of CiADS facility: beam trips is emphasized

- Electricity on the external grid, less than 3/y (beam trip time >5min)
- \Box Thermal shock on the beam window, less than 25000/y(beam trip time <1s)
- \Box Thermal shock on the reactor, less than 2500/y(1s
beam trip time <10s), less than 250/y(10s
beam trip time <5min)

Status of CaFe linac

- □ 4 cryomodules
- □ 4K operation
- □ Trip about 1 time per hour

Robust Superconducting Cavity

Thicker cavity wall

- **Local helium contacted with cavity**
- **Shield the external vibrations**

- Cu/Nb Cavity
- **Save niobium cost**
- **High thermal stability**
- **High mechanical stability**
- Previous two major technology
 - Sputtering niobium on copper cavity(micro niobium): CERN's LEP, 274 cavities, 4cell, 352MHz; INFN's 54 QWR cavities
 - Cu/Nb Explosive sheet(2mm niobium+8mm copper):JAERI's QWR cavities

IMP's Cu/Nb Cavity development

- Developing sputteing niobium on copper since 2015
- □ Cu/Nb sheet fabrication :Explosive, HIP
- Coating Copper on Nb cavity
- Casting Copper on Nb cavity

Thin-shell cavity

- Fabrication cavity with 1mm thickness niobium
- **1/3 material cost**
- **Fabrication processing not change much**
- Improved heat exchange
- □ Niobium cavity's surface processing still can be used
- **4** single cell cavity have been completed and two of them be tested
- □ Now, fabricating 1mm HWR cavity are developing

Coating Copper on niobium cavity

Coating 4~5mm copper on the outside of thin niobium cavity

- **Improved mechanical stability**
- **Enhanced the thermal performance for using local cooling**

- **Comparing to coating copper**
- **Casting copper shows impressive higher thermal conductivity**
- **Shorter fabrication time**
- **There is some issues still work on**

LINAC22_TU1AA01_Mengxin

Cavity Simulation

Thermal Simulation

- Local helium cooling
- □ 0.2 K temperature arising

Mechanical Simulation

□ Stiffness 10KN/mm

□ Adjusting the thickness of cavity is flexible for optimizing mechanical stability

		HWR010	HWR019	HWR040
3mm niobium	LFD [Hz/(MV/m)^2]	-5.5	-5	-7
	df/dp [Hz/mbar]	-10.5	-1	-35
6mm(Cu/Nb)	LFD [Hz/(MV/m)^2]	-4	-0.92	1.23
	df/dp [Hz/mbar]	-0.08	0.71	2.28

LINAC22_TU1AA01_Mengxin

റ

Engneering Design

HWR section's design have been completed
Ellipitical section's design still going on

Niobium cavity fabrication

9 HWR0105 deliver to lanzhou4 final EBW

24 HWR019

HWR040(1mm)

6 are preparing for final EBW part fabrication

- **The coupler have been delivered two for testing**
- **Tuner are under testing**
- Integration testing vessel have been ready
- **Cavity is doing final coating processing**

- **Appling Cu/Nb** cavity technology in CiADS is a critical decision
- **Different type of Cu/Nb cavity are developing**
- New engineering design have been conducted to cooperate with the Cu/Nb cavity technology
- **HWR010** cryomodule is planed assembly in the end of this year

Thank you for your attentions!

