

Impact of the ERL Beam Loading Patterns on the RF system and BBU Instabilities

S. Setiniyaz^{1, 2}, R. Apsimon^{1, 2} Matthew Southerby^{1, 2} and P. H. Williams²

¹Lancaster University, Bailrigg, Lancaster, LA1 4YR, UK & ²Cockcroft Institute, Daresbury Laboratory, Warrington, WA4 4AD, UK

ERL cavity voltage, RF power, and BBU threshold currents are beam loading pattern dependent **Optimal pattern can lower cavity voltage fluctuation and power consumption and increase threshold current**

Pattern dependance

• V_{cav} and P_{amp} are pattern dependent

 Some patterns have stabler cavity voltage and requires less amplifier powers

• FF lowers power consumption

Pattern #1: {1,2,3,4,5,6} Pattern #2: {1,2,3,4,6,5} Pattern #120: {1,6,5,4,2,1}

Beam Breakup (BBU) instabilities

1. Offset x_n causes HOM: $V_{HOM,R} = \frac{\omega_{HOM}^2}{2c} q_b \left(\frac{R}{Q}\right)$ x_{n}

BBU Positive feedback loop: Offset \rightarrow HOMs \rightarrow Kick \rightarrow Off-set \rightarrow ...

• $I_{test} = I_{th} \rightarrow V_{HOM}$ stable

t (μs)

BBU pattern dependance

Contact: s.saitiniyazi@lancaster.ac.uk

LINAC 2022, Liverpool

Paper ID: TUPORI20