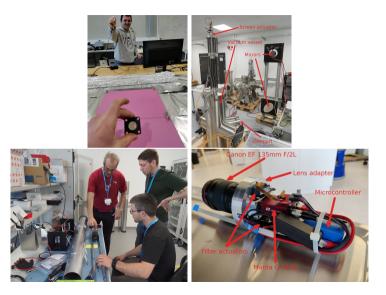
Progress Of The Ess Target Proton Beam Imaging System

Håvard Gjersdal¹, Erik Adli¹, Greyson Christoforo¹, Kyrre Ness Sjobak¹, Eric D. Fackelman¹, Ole M. Røhne¹, Jonas S. Ringnes¹, Simen R. Solbak¹, Maren C. Lithun¹, Cyrille Thomas², Yngve Levinsen², Kaj Rosengren², Thomas Shea², Gerard Bell³, Mark Ibison⁴, Shrikant Joshi⁵, Stefan Björklund

¹University of Oslo, ²ESS ERIC, ³STFC, ⁴University of Liverpool and Cockcroft Institute, ⁵University West

Introduction

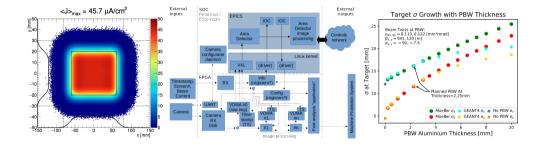

Imaging systems

- Beam footprint made visible by scintillating material
- Mirrors transport light to camera away from radiation
- Images are processed and presented to operators

University of Oslo in-kind contribution

- ▶ Two target imaging systems: Target Wheel and Proton Beam Window
- Two images for tuning dump line

Tuning dump imaging systems, delivered June 2022



Luminescent coating of the Target Wheel, March 2022

Image processing and simulations

