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Introduction SRF Cavity Design

PERLE (Powerful Energy Recovery Linac for Experiments) is a novel multi- The first 5-cell 801.58 MHz Nb bare cavity suitable for PERLE was
turn* energy recovery linac (ERL) based on superconducting RF (SRF) designed, fabricated, and successfully tested at JLab in 2018.

technoloqgyv currently under study and later to be hosted at Orsay in France.
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AC in arc 6 = Agg/2 Footprint: 31.7 x 5.5 x 0.9 m?

For high-current ERL, a relevant effect is multi-pass BBU which emerges The cavity design features a rather. large cell-tq-cell C.OUPHF
when the electron beam interacts with the Higher Order Modes (HOMs) of the (ke = 2.93 %) to cope with HOM-damping needs, while keeping th
cavity, giving rise to beam instabilities and increasing the cryogenic load. ratios of the surface peak electric field, Epy, and surface peak magnet
Using HOM couplers with strong damping requirements becomes field By, to the accelerating field, E,.., small to pursue a high acceleratir

fundamental to limiting multi-pass BBU in the studied cavity. gradient (Epk/Eace = 2.38, Bpk/Eace = 4.62 mT/MV/m).

Higher Order Modes Numerical Methods

HOMSs are parasitic excited eigenmodes in an accelerating RF cavity, other Time-domain wakefield and frequency-domain eigenmode simulations were

than and with a frequency greater than the fundamental mode. Typically, the carried out in CST Studio Suite® to calculate the cavity broadband HOM
most problematic parasite modes are the first two dipole modes (TE111 and impedance spectra and identify the dangerous BBU HOMs.

TM110) and the first monopole mode (TMO011), which usually reside below the
corresponding beam tube cutoff and possess high R/Q values. The TM012 7- " Longitudinal impedance [Q] " Longitudinal impedance [Q)]
mode appears at around 2.25 GHz and remains confined within the cavity (R ~ Vifor=0) %
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The hook coupler provides higher damping of the first two dipole passbands, | e Sl ,
final end-group design for

while the DQW coupler exhibits a better monopole coupling for modes around 10" s .
1.43 GHz than the probe design. o ey “*the PERLE cavity.
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