

International Linear Accelerator Conference 2022 28th August -2nd September 2022

MOPORI22 (SUPCRI07)

Yuga Nakazawa^{A)}, H. Iinuma^{A)}, Y. Iwata^{B)}, Y. Iwashita^{C)}, M. Otani^{D)}, N. Kawamura^{D)}, R. Kitamura^{E)}, Y. Kondo^{E)}, N. Saito^{F)}, Y. Sue^{G)}, K. Hasegawa^{E)}, N. Hayashizaki^{H)}, T. Mibe^{D)}, T Morishita^{E)}, H. Yasuda^{I)}, T. Yamazaki^{D)}, M. Yoshida^{D)}

A) Ibaraki Univ., ^{B)}NIRS, ^{C)}Kyoto Univ., ^{D)}KEK, ^{E)}JAEA, ^{F)}J-PARC center, ^{G)}Nagoya Univ., ^{H)}Tokyo Tech., ^{I)}Univ. of Tokyo,

High-Power Test of an APF IH-DTL Prototype for the Muon Linac

Background

Muon anomalous magnetic moment (g-2)

The Fermi National Accelerator Laboratory (FNAL) measured muon g-2 with an accuracy of 0.46 ppm, which is consistent with the previous experiment BNL-E821, and these results showed a discrepancy of 4.2 standard deviations from the SM prediction.

Experimental method

1: Spin polarized beam

 π^+

3 : Positron tend to be

direction

 $1 + \alpha \cos \theta$

emitted for a muon spin

1. IH-DTL (Inter-digital H-mode DTL)

High efficiency and short-range acceleration are necessary to suppress decay loss during acceleration in the low-β region.

Alternating Phase focusing (APF) method was adopted for transverse focusing. Transverse focusing is possible only RF E-field by adjusting the synchronous phase (ϕ_s) of each cell.

☺ No focusing magnets → Simplified DT

The monolithic DT structure can be applied.

• DT alignment procedure is not required.

⊗ Field error affect the dynamics.

No water-cooling

Although the outer cavity wall of the full-IH will be

water-cooled, it is difficul

to cool the monolithic DT

Coaxial loop antenna

RF window : Alumina

Spring Coil RF contactor

directly.

RF coupler

Ceramics

(BeCu)

50 mm stroke

No RF contactor

Tuner ×3

First time that the monolithic DT structure is being applied to a 324 MHz IH-DTL for muon acceleration.

Cost saving

 $\phi_s > 0$

Transverse

Focusing

 \rightarrow we developed a short-length IH-DTL ("short- IH") as a prototype.

Measure

positron

3. Fabrication / Low-power tuning

Low-power tuning

. bare cavity w/o tuners and coupler

Parameters	Meas.	Sim.
Resonant frequency (MHz)	321.36	321.88
Unloaded Q	7800	8600

- 2. w/ tuners and coupler
 - The frequency was roughly adjusted
 - The coupling coefficient ($\beta_{coupler}$) of the coupler was adjusted to critical coupling by rotating the loop angle $(\theta = 50 \text{ deg.})$

3. fine-tuning

 The frequency was tuned to 324.00 MHz. $(L_{tuner}#1, #2, #3 = 45.2, 43.3, 45.8 \text{ mm})$ • $\beta_{coupler} = 1.01$

Field measurement

• After low-power tuning, the electro-magnetic field distribution of the cavity was measured using the bead-pull method.

Tuner #2

 $\frac{f_p - f_0}{f_0} = -\frac{\pi r^3}{U} \Big[\varepsilon_0 E_0^2 - \frac{\mu_0}{2} H_0^2 \Big]$ unperturbed frequency f_n : perturbed frequency

simultaneously. Storage region (0.66 m) Low-emittance muon beam is needed.

J-PARC muon g-2/EDM experiment (E34)

Japan Proton Accelerator Research complex

- MLF (Materials and Life Science Experimental Facility) • 3 GeV proton beam
- μ target and n target
- Beam power 1MW (First half of 2022 : 830 kW) Double pulses, 25 Hz

New beamline will be constructed at MLF H-line.

Parameters	Meas.	Sim.
Resonant frequency (MHz)	324.00	324.00
Unloaded Q	7100	8300

The fabrication accuracy of the drift tube with a monolithic structure fulfills the requirement.

 $Q_{0 \text{ meas.}} = 86 \% Q_{0 \text{ sim}}$

4. High-power test

Experimental setup

- RF source : 324-MHz klystron (Canon E3740A)
- Vacuum pumping : 240-L/s TMP.
- The data from the power meters were directly recorded by an EPICS IOC.
- Inter-lock
 - Vacuum pressure [Bayard-Alpert gauge]
 - Temperature rise [thermocouple]
 - Reflection voltage [VSWR meter]

Conditioning / Holding test Date. 2022/4/1 ~ 4/27 @J-PARC LINAC Klystron test stand

Need to develop a new muon linac and demonstrate acceleration.

2016 : Basic design & cavity design 2017 : World's first muon acceleration with RFQ. [R. Kitamura, LINAC2018] : Bunch measurement of accelerated muon 2018 ~ 2019 : Development of I H - D T L 2020 ~

5. Summary / Prospects

- We demonstrated that the short-IH could be operated very stably with high-power.
- Full-IH was already fabricated.
- We plan to conduct an acceleration test with Full-IH in 2024.

Measurements were consistent with the simulation results.

These studies prove that the design and fabrication methodology established by the short-IH can be applied to the full-IH.

These work were supported by JSPS KAKENHI grant numbers 25800164, JP15H03666, JP16H03987, JP16J07784, JP18H03707, 18H05226, JP20H05625, JP21K18630, JP21H05088, JP22H00141; the JST FOREST Program (grant number) JPMJFR212O); and the natural science grant of the Mitsubishi Foundation. These studies were based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).