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Abstract
SPIRAL2 is a superconducting accelerator for protons,

deuterons and heavy ions delivering a maximum beam power
of 200 kW at 40 MeV (for deuteron beams). 26 supercon-
ducting quarter wave cavities are operated at 4.4 K, plunged
in a liquid helium bath with a drastic phase separator pres-
sure control. Previous years have seen the development of
advanced process control for cryogenics allowing to cope
with high heat load dynamics thanks to an automatic heat
dissipation compensation and a model based control. The
latter is based on models, using the Simcryogenics library,
optimized and linearised in the Programmable Logic Con-
trollers. The SPIRAL2 operation has demonstrated that such
control allows to keep the specified conditions for RF and
beam operation even at levels of heat load dissipation ap-
proaching the physical limits of the cryogenic system. These
developments allowed to synthesise a virtual observer of the
dynamic heat load dissipated by the cavities. The present pa-
per summarises the development of such observer based on
the physical thermodynamic model and on machine learning
techniques.

INTRODUCTION
SPIRAL2 [1] at GANIL (Grand Accélérateur National

d’Ions Lourds) is a state of the art accelerator that aims at
delivering some of the highest intensities of rare isotope
beams. Its driver should accelerate protons, deuterons and
heavy ions at intensities up to 5 mA and a maximum beam
power of 200 kW (see Table 1) [2]. The driver is com-
posed of ECR (Electron Cyclotron Resonance) sources, a
RFQ (Radio-Frequency Quadrupole) and a superconducting
LINAC (LINear Accelerator). The latter is made of 26 QWR
(Quater Wave Resonating) independently phased supercon-
ducting cavities. SPIRAL2 cavities are of two families: low
beta (𝛽0 = 0.07) and high beta (𝛽0 = 0.12) [3]; where 𝛽0
is the relative velocity of the accelerated particles. The low
beta cavities are the first 12 cavities of the LINAC. They are
made of bulk Niobium for their upper part and copper for
the bottom part. Each low beta cavity is housed in a differ-
ent cryostat and separated by room temperature quadrupole
magnets. The cryostats, that we call cryomodules, integrate
passive RF, vacuum and other components needed for the op-
eration of the cavities. The last part of the LINAC comprises
∗ adnan.ghribi@cnrs.fr

Table 1: SPIRAL2 Beam Specifications

Particles H+ 3He2+ D+ ions [Units]

Q/A 1 3/2 1/2 1/3
Maximum current 5 5 5 1 [mA]
Maximum beam power 165 180 200 45 [kW]

7 cryomodules, housing 2 high beta cavities each. These cav-
ities are made of bulk niobium. All cavities are operated at
88.0525 MHz. To be operated, the superconducting cavities
are plunged in liquid helium baths with a stringent pressure
control to avoid detuning. Every cryomodule has a dedicated
satellite valves-box that insures liquid helium distribution
and pressure/level regulations. These satellite cryostats form
the cryodistribution. The latter can be decomposed in two
branches: A left branch made of 12 valves boxes (for all
low beta cryomodules) and a right branch made of 7 valves
boxes (for all high beta cryomodules). More details on the
cryoplant and the cryodistribution can be found in Ref. [4].

The last years have seen the commissioning of the different
parts of the accelerators leading to the beam commission-
ing and the current ramp up to achieve the target require-
ments [1]. Cryogenics proved more challenging that initially
expected [5]. This pushed the developments of advanced
model based control bringing immunity to high dynamic
heat loads and uneven heat load distributions effects. One of
the consequences was the ability to introduce model based
virtual observers which opened the way to machine learning
based diagnostics. This paper depicts these developments.
The first part details the specific challenges of the cryogenics
of the SPIRAL2 LINAC and the strategies to overcome them.
The second focuses on virtual heat load observers.

CRYOGENIC CONTROL:
CONSTRAINTS AND STRATEGIES

The first purpose of the cryogenic system is to cool down
the superconducting cavities under their transition tempera-
ture and keep them in optimal operating conditions. Apart
from the cool down, which poses its own set of challenges
due to Q-disease (see Ref. [5]), maintaining optimal oper-
ating conditions can be difficult. Superconducting cavities
operate around a center frequency 𝑓0 with an admissible
bandwidth Δ𝑓0. Micrometric shape deformations due to sur-
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Figure 1: Heat load distribution in the LINAC showing the
dynamic heat load compensation strategy.

face forces such as Lorentz forces or liquid helium pressure
fluctuations can shift the cavities resonant frequency beyond
their admissible bandwidth. The link between the liquid
helium pressure variations 𝛿𝑃𝑏𝑎𝑡ℎ and the frequency shift
𝛿𝑓 can be translated in term of pressure-frequency sensitivity
𝑆𝑝 with:

𝑆𝑝 = 𝛿𝑓
𝛿𝑃𝑏𝑎𝑡ℎ

(1)

In the case of SPIRAL2, 𝑆𝑝 is comprised between -1 and
-3 Hz/mbar for low beta cavities and between -5 and -7
Hz/mbar for high beta cavities. Considering a cavity phase
shift ΔΦ = 𝜋/12 and a loaded quality factor 𝑄𝐿 ∼ 106, this
brings the admissible 𝛿𝑃𝑏𝑎𝑡ℎ to ∼ 10 mbars for low beta
cavities, and ∼ 3 mbars for high beta ones.

The cryogenic system of SPIRAL2 is based on a cryoplant
that produces up 120 g/s of bi-phasic helium at 1300 mbars.
The design of the system makes the pressure in the cavi-
ties helium baths (turbulence, two-phase flow behaviour)
particularly difficult to control with independently tuned
PID (proportional integral derivative) valves controllers and
uneven helium flow distribution along the cryodistribution.
To overcome these challenges, two strategies have been ap-
plied. The first one is to equally distribute the flows between
the LINAC cryodistribution branches and between the cry-
omodules of every branch. This is done by using heaters
located close to the cavities liquid helium baths to apply a so-
called dynamic heat load compensation. This dynamic heat
load compensation not only equally distributes the helium
flows but also keeps it constant with respect to accelerating
fields variations (see Fig. 1). The second strategy was to
use model based MIMO (multiple inputs - multiple outputs)
controllers for simultaneous liquid helium level and pressure
control. These controllers were based on a cryogenic model
of the SPIRAL2 LINAC [6] linearized around a given set of
boundary conditions, kept constant thanks to the dynamic
heat load compensation. Tuned differently, the controllers
also allowed to operate abnormal cryomodules at the limit
of what the physical system allows.

Figure 2: Model based heat load observer architecture.

Figure 3: Up: density distribution of the estimated heat
load 𝑄𝑜𝑏𝑠

ℎ vs the measured heat load 𝑄𝑟𝑒𝑎𝑙
ℎ . Bottom: density

distribution of residual of estimated heat load. Red: ideal
behaviour. Green: DNN estimator. Blue: model based linear
PI estimator.

STATE OBSERVERS FOR ADVANCED
MONITORING AND DIAGNOSTICS

Model Based State Observers
One by-product of having a model based control is the

ability to estimate hidden parameters of a physical system
from existing instrumentation. In our case, the cryogenic
model of the LINAC has been used to generate a virtual
observer of the dynamic heat load of the cavities. The ar-
chitecture of such observer is described in Fig. 2. Starting
from the instructions given to the input and output valves
controllers (pressure and liquid helium level control), we
extract the estimated internal energy of the system, its en-
thalpy as well as the input and output helium mass flows.
Filtered pressure and liquid helium level measurements as
well as estimated model parameters are injected in a PI (Pro-
portional Integral) observer. The latter uses a time invariant
linear system (obtained by linearization around the operation
set-point) and is described by the following equation:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑑(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) (2)

31st Int. Linear Accel. Conf. LINAC2022, Liverpool, UK JACoW Publishing
ISBN: 978-3-95450-215-8 ISSN: 2226-0366 doi:10.18429/JACoW-LINAC2022-TUPOGE03

TUPOGE03C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

484

Technology

Cryomodules and cryogenics



Figure 4: Neural network architecture layout used for the machine learning based heat load observer.

where 𝑥 = [ 𝜌
𝑢𝑖𝑛

] ∈ ℝ𝑛𝑥 is the state vector, with 𝜌 the he-

lium density and 𝑢𝑖𝑛 the internal energy; 𝑦 = [ 𝑃𝑇
𝐿𝑇 ] ∈ ℝ𝑛𝑦

is the output vector, with 𝑃𝑇 the measured helium bath
pressure and 𝐿𝑇 the measure liquid helium level ; 𝑢 =

[ �̇�𝑖𝑛
�̇�𝑜𝑢𝑡

] ∈ ℝ𝑛𝑢 the input vector, with �̇�𝑖𝑛 and �̇�𝑜𝑢𝑡 be-

ing respectively the input and output helium mass flows ;

𝑑 = [ 𝑄ℎ
𝜀�̇�

] ∈ ℝ𝑛𝑑 the unknown input vector, with 𝑄ℎ the

heat load and 𝜀�̇� the error on the estimated helium mass flow.
Considering that the system is stable, the estimated gain of
the PI observer allows to recover the unknown inputs: the
heat load 𝑄ℎ and the mass flow error 𝜀�̇�. Results of linear
PI model based heat load observers are shown in Fig. 3. The
system being non linear, a linear estimator introduces an
error that increases with distance to the operation set-point.
This limits its use for high dynamics fault detection. To
improve the estimation of the mass flow error, a non linear
PI observer is under development. Preliminary results show
a clear improvement with respect to the linear PI estimator
but highlight other non linearities due to measurement noise
and non symmetric behaviour with regard to a positive or
negative heat load dynamic.

Machine Learning State Observers
To overcome the limitations of the model based PI heat

load observer, a different yet complementary approach based
on machine learning techniques is being explored. A 4 layers
dense neural network, following the architecture shown in
Fig. 4, has been used. The network was trained during
100 epochs, with a learning rate of 10−5 and a batch size
of 64. A rectified linear unit (ReLu) activation function
has been chosen to account for the non-linearity needed to
reproduce the complex correlations underlying the features
set. Finally, MSE (mean squared error) has been chosen for
the estimation of the loss function with:

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)
2 (3)

where n is the size of the dataset, 𝑌 the observed values
and ̂𝑌 the predicted values.

Results of the DNN model with respect to the linear PI
observer can be seen in Fig. 3. While the DNN observer
outperforms the linear PI observer, it remains subject to
important improvements to account for measurement noise.
Features binning optimization and convolution networks

are the next steps in improving such observers. The model
remains important for understanding specific abnormal be-
haviours. In that respect, a physics informed learning is
planned for precise estimation of mass flow errors.

CONCLUSION
Previous years have seen the success of the cryogenic com-

missioning of the SPIRAL2 LINAC. The road to operation
poses a whole new set of challenges linked to the reliability
of the systems. Efforts to make the commissioning a success
gave birth to a robust thermodynamic model of the SPIRAL2
LINAC, allowing an efficient model based control. As a re-
sult, knowledge of the physical behaviour of the cryogenic
system made possible the synthesis of virtual model based
dynamic heat load observers. However, the inherent real-
ity of everyday operation like valves mis-calibration, cold
helium flow profile, instrumentation measurement noises
as well as internal non linearities limit the use of a linear
observer for diagnostics. A first and successful attempt to
use dense neural networks for heat load virtual observers has
been made. Several improvements on both machine learning
and model based observers will however be necessary to
enable their final integration in the accelerator main control
system for fault detection and diagnostics.
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