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Abstract 
There are approaches to apply machine learning (ML) 

techniques to efficiently operate and optimize particle ac-
celerators. Deep neural networks-based model is applied to 
experiments, correcting beam orbit through the low energy 
beam transport at the proton injector test stand. For more 
complex applications, time-series analysis model is studied 
to predict beam orbit in the 100-MeV beamline at KO-
MAC. This paper describes experimental data to train neu-
ral networks model, and presents the performance of the 
machine learning models. 

INTRODUCTION 
KOrea Multi-purpose Accelerator Complex (KOMAC) 

has been providing 100-MeV proton beams to users since 
2013 [1,2]. In order to make facility operation more stable 
and reduce the time required for beam tuning, an automatic 
scan program has been developed and utilized. However, it 
is not a systematic method due to lack of linkage between 
data and physics model. Advanced control techniques are 
applied only to specific areas such as feedback control to 
compensate for transient beam loading in low level RF sys-
tems [3]. 

Machine learning, which has recently been in the spot-
light again with the rapid increase in computing power and 
the development of new algorithms, is showing various ap-
plications and good results in the field of accelerator con-
trol [4,5]. In the low energy beam transport (LEBT) section 
of high-power linear accelerator like KOMAC, beam orbit 
correction is important for beam matching with the subse-
quent RFQ to minimize beam loss. MYYRHA and IPHI 
develops neural networks algorithm for LEBT tuning of 
proton injectors. The collimator position and vacuum pres-
sure were set as input nodes, and the output nodes were 
trained on beam transmission data [6]. 

In KOMAC, there was a previous study verifying the 
practicality of a machine learning model trained with beam 
dynamics simulation data in LEBT. The model made with 
more than 700,000 computational data showed a similar 
level of accuracy while running more than 10 times faster 
than the traditional simplex algorithm [7]. Here, this study 
shows the results of developing a trained neural networks 
model which performs beam orbit correction based on 
beam measurement data so that beam control can be auto-
mated and advanced. 

In addition, we present a preliminary study to develop an 
effective machine learning model in medium or high en-
ergy beam transport with more complexity. To overcome 
the finite number of beam diagnostics and beam correctors, 

time series analysis is applied to the transverse dynamics 
of a bunched beam with time-sequence. It shows the results 
of applying the long short term memory (LSTM) model 
and a transformer model. 

METHOD 
Beam dynamics simulation and beam experiments are 

carried out to develop deep neural networks model for 
beam orbit correction at the proton injector test stand and 
time-series analysis model for beam orbit prediction at the 
KOMAC. 

Deep Neural Networks Model for Beam Orbit 
Correction at the KOMAC Proton Injector Test 
Stand 

Beam orbit correction has been studied in proton injector 
test stand at the KOMAC by developing deep neural net-
work model. Proton injector has very simple structure to 
adapt machine learning model with just a few number of 
control variables and measured beam parameters as shown 
in Fig. 1. 

 

 
Figure 1: Layout and calculated beam dynamics of pro-

ton injector test stand at the KOMAC. 
 

Low energy beamline consists of three focusing magnets 
including a dipole and two solenoids and two steering mag-
nets. Transverse beam profiles are measured at the beam 
profile monitor installed at the diagnostics chamber located 
between two solenoids.  

The initial beam properties change according to the op-
erating parameters of the ion source, which affects the 
beam dynamics in the low energy beamline. As demon-
strated in Fig. 2, we collect beam experimental data and 
train deep neural networks to make low energy beam orbit 
correction model for various operating variables. 

Adjustable variables include absorbed power and ion 
source solenoid strength in microwave ion source part, and 
magnetic field strengths of dipole, solenoid#1, horizontal 
steerer, and vertical steerer magnets in the low energy 
beamline. As shown in Fig. 2(b), the neural networks 
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model is composed of an input layer with 6 nodes, three 
hidden layers with 32 nodes each, and an output layer with 
4 nodes which are beam measurement data. 
 

 
Figure 2: (a) Overview of beam experiments and flow of 
data to train deep neural networks model. (b) Layout of 
neural networks model for the low energy beam orbit cor-
rection. 
 

Time-series Analysis Model for Beam Orbit Pre-
diction at the KOMAC Linear Accelerator 

For systems with such a small number of control knobs, 
it is easy to build a data-driven neural network model using 
parameter scan. However, there are numerous beam optics 
elements for the entire accelerator, and it is almost impos-
sible to accumulate data by scanning each of them. The 
number of beam position monitors and the number of con-
trolling magnets are usually limited. In particular, when the 
number of beam diagnostics is greater than or equal to the 
number of FODO lattices, beam orbit errors mainly caused 
by misalignment or field errors can be re-constructed. 

Virtual diagnostics are needed to overcome the lack of 
measurement data. The beam propagates in the longitudi-
nal z direction, which is also a function of time t for a beam 
bunch. Therefore, the beam has the characteristics of time 
sequence data. Time series analysis can be used when a 
variable at one point in time is affected by previous varia-
bles and by past errors. 

According to the analysis method, finite data may be in-
terpolated to reconstruct continuous trends. And it is also 
possible to extrapolate beam trajectories in the future or 

downstream that have not been measured. In this context, 
beam orbit is predicted by using the informer model that 
showed state-of-the-art performance among transformer-
based models [8], and it was compared with the seq2seq 
model which is composed of long short-term 
memory(LSTM)-based encoder and decoder. 

 

 
Figure 3: Calculated beam dynamics from 3-MeV RFQ to 
100-MeV proton beam dump. 

 
The beam orbit data on a horizontal plane is collected 

from beam dynamics simulation data on the KOMAC 100-
MeV dump beamline as plotted in Fig. 3. From 3-MeV 
RFQ exit to 100-MeV beam dump, beam dynamics is cal-
culated on accelerator cavities and beamlines with a total 
length of 80-m. A beam orbit is computed at over 1700 
points divided by accelerating gaps and beamline element 
positions. The time series data is analysed by models that 
can predict the beam orbit near the end of beamline or 
beam dump. 

RESULTS 
 

 
Figure 4: Comparison of prediction errors and consumed 
time between the DNN model and parameter scan method. 
 

Low energy beam orbit correction methods are com-
pared in terms of prediction errors and consumed time as 
illustrated in Fig. 4. The deep neural networks (DNN) 
model shows a prediction error distribution close to Gauss-
ian, and the mean and standard deviation for horizontal(H) 
steerer and vertical(V) steerer are (-0.05±0.10 A, -
0.06±0.10 A). On the other hand, parameter scan method 
shows a relatively flat error distribution due to a truncation 
of discrete setting value. 

The measurement was repeated 10 times under one op-
erating condition, and the pulse beam repetition rate was 1 
Hz. It takes 10 seconds to obtain the data on the average of 
beam center and prediction error when the DNN model is 
utilized to correct beam orbit. On the other hand, when 
scanning current values from -3 A to +3 A for two steering 
magnets, it takes 1690 sec at 0.5 A interval and 490 sec at 
1.0 A interval. Combining and comparing the above results, 
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the DNN model produces accurate results in terms of pre-
diction error compared to the parametric scan method, and 
consumes much shorter tuning time. 

 

 
Figure 5: Comparison of the prediction models for beam 
orbit on a horizontal plane - (a) seq2seq (b) Informer.  
 

Time-series analysis is performed on the beam orbit data 
from beam dynamics calculation on the 100-MeV dump 
beamline. As shown in Fig. 5, informer model overally pro-
duces better prediction than seq2seq model. Transformer-
based informer model seems to be more robust to a sudden 
change in beam trajectories near the beam dump than 
seq2seq model. Mean absolute percentage error (MAPE) 
of informer model is estimated to be under the 10% right 
before the beam dump. However, the prediction error 
sharply increases at the beam dump in both models. Instead, 
this attribute could be utilized for anomaly detection to pre-
dict uncontrollable beam loss or severe damage on ma-
chine beforehand. 

CONCLUSION 
In the proton injector test stand at the KOMAC, deep 

neural networks model is deployed to control low energy 
beam orbits under various operating conditions. The ma-
chine learning model shows faster and more accurate orbit 
correction than the traditional parameter scan method. 

The beam orbit prediction model is constructed using the 
long short-term memory-based seq2seq model and the 
transformer-based informer model. The transformer-based 
model infers 100-MeV proton beam orbit better. The tech-
nique covered in the study will be utilized to develop a ma-
chine learning-based beam orbit correction model or anom-
aly detection model for more efficient beam operation. 
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