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Abstract 
A server-based quench detection system is used since the 

beginning of operation at the European XFEL (2017) to 
stop driving superconducting cavities if they experience a 
quench. While this approach effectively detects quenches, 
it also generates false positives, tripping the accelerating 
station when failures other than quenches occur. Using the 
post-mortem data snapshots generated for every trip, an ad-
ditional signal (referred to as residual) is systematically 
computed based on the standard cavity model. Following 
an initial training on a subset of such residuals previously 
tagged as “quench” / “non-quench”, two independent ma-
chine learning engines analyse routinely the trip snapshots 
and their residuals to identify if a trip was indeed triggered 
by a quench or has another root cause. The outcome of the 
analysis is automatically appended to the data snapshots 
and distributed to a team of experts. This constitutes a fully 
deployed example of machine-learning-assisted failure 
classification to identify quenches, supporting experts in 
their daily routine of monitoring and documenting the ac-
celerator uptime and availability. 

INTRODUCTION 
 The European X-ray free electron laser (EuXFEL) is a 

user facility delivering ultra-short hard and soft X-ray 
flashes with the highest brilliance worldwide, through 
three undulator lines and serving up to six experiments. It 
is based on a 10 Hz pulsed 17.5 GeV superconducting 
linac, commissioned since 2017. Large accelerators require 
a high level of automation, in particular for trip detection, 
classification and recovery. XTLReport is a tool developed 
over the last years [1] to track the linac uptime and catego-
rize trips according to their root cause. In its current imple-
mentation, once an hour, the tool monitors for each RF sta-
tion a total of 50 hardware interlock histories available in 
the control system, coming from the following subsystems: 
klystron, modulator, coupler, quadrupoles, cryogenics, 
vacuum and machine protection system. On top of these 
hardware interlock, software interlock properties (for ex-
ample coming from the quench detection system or the fi-
nite state machine) are also being monitored. Often a trip 
fires several interlocks, requiring experts to look at the 
post-mortem time signals to reconstruct the chain of events 
that lead to the trip. However, the accelerator conditions at 
the time of the trip and the sequence of interlock often pro-
vide a unique signature allowing for trip classification, so 
that once identified, this process can be automated. XTLRe-
port has gone through several iterations, each time assign-
ing a newly found sequence of interlocks to a new root 
cause, hence providing live up/downtime accounting and 

root cause analysis, or leaving the root cause unknown if it 
cannot (yet) be identified. The tool also fetches DAQ data 
of the tripped station, before (20 sec) and after (5 sec) the 
event, and bundles it into a data snapshot saved for post-
mortem analysis. A classic example of such a trip is when 
the quench detection server (QDS) detects a quench and 
trips the station by stopping the RF to minimize the impact 
of the excessive cryo load induced by the quench on the 
cryogenic system. The QDS decision algorithm follows the 
standard approach of computing the cavity loaded quality 
factor (QL) for every pulse and comparing it to a running 
average [2]. Sudden drops in QL are interpreted as quench 
and the RF is stopped. While this approach proved ex-
tremely successful to minimize down time when quenches 
occur, false positives (i.e. “fake” quenches”) have also 
been observed. As a part of operations supervision, an ex-
pert routinely reviews the last trips, analyzes the RF wave-
forms and concludes if a quench was real or not. An exam-
ple of a real and a fake quench, compared to a nominal 
pulse is given in Fig. 1. This plot illustrates the differences 
observed during the decay part of the RF pulse, where QL 
is computed by the QDS.  

 
Figure 1: Normalized cavity gradient amplitude for a nom-
inal, fake- and real-quenched pulse. The inset zooms on the 
decay section at the end of the pulse, when the RF is 
switched off. 

As illustrated in Fig. 1, a real quench behavior corre-
sponds to a steeper slope during the decay. However, other 
phenomena can occur during the pulse, interfering with the 
QL computation and fooling the QDS into detecting fake 
quenches. In the fake-quench example of Fig. 1, one can 
see a step-down in the decay around 1500 usec followed 
by a step-up around 1800 usec. This behavior (suspected to 
come from a failure in the digitization chain) is not a 
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quench but still yields a lower QL and will trigger the QDS. 
More details about mechanisms that can fool the QDS and 
fake-versus-real quench statistics are given in [3]. The cor-
responding QL values computed over the first 100 usec of 
the decay are given in the legend of Fig. 1. The threshold 
for quench detection is set to 5×105 (i.e. 10% of nominal 
value), which corresponds approximately to a three order 
of magnitude drop of the unloaded quality factor. In both 
cases (fake and real quench), the threshold is exceeded. 
Empirical threshold adjustment to minimize the number of 
false positives was pursued, along with techniques to im-
prove the robustness of the QL computation (such as ex-
tending the area of the decay over which QL is computed). 
These measures helped in minimizing the number of false 
positives. One should also mention that the QDS imple-
mentation at the EuXFEL is software-based (as opposed to 
a hardware- or firmware-based implementation). Due to 
possible delays between server communication, it can hap-
pen that the RF is not systematically stopped on the next 
pulse following a quench, but several pulses later (up to 
five in extreme cases). 

The main motivation for this work was to develop a clas-
sification algorithm based on machine learning techniques 
to decide if the quench was real or not, looking at the avail-
able post-mortem data sets. Purely data-based approaches 
have been pursued in other labs [4]. The idea here is to ex-
ploit the known cavity model [5], hence requiring less 
training data. The approach is briefly presented in the fol-
lowing section; its benefits are illustrated in the results sec-
tion and future work is discussed in the conclusion.  

UPDATED APPROACH TO QUENCH 
IDENTIFICATION 

The QDS makes use of the cavity probe signal to detect 
quenches. However, the cavity forward and reflected RF 
waveforms are also available and comply with the standard 
electrical cavity model [5]. One can make use of this addi-
tional information to get more insight on the nature of the 
trip, by exploiting differences between the detected cavity 
probe and the expected trace (or virtual probe) computed 
using the cavity model and the measured forward power. 
This idea was explored in [6], computing a figure of merit 
for each pulse, referred to as residual, which is an indicator 
of model deviation, defined as: 
𝑟 𝑡  

𝑉 , 𝑡 𝜔 ⁄ 𝑉 , 𝑡 2𝑉 , 𝑡 𝑉 , 𝑡

𝑉 , 𝑡

𝑉 , 𝑡 𝜔 ⁄ 𝑉 , 𝑡 2𝑉 , 𝑡 𝑉 , 𝑡

𝑉 , 𝑡
 

(1) 

 
where the subscripts P, F, B, I and Q stand for probe, for-
ward, beam, in-phase and quadrature voltages while 1/2 is 
the cavity half-bandwidth. A generalized likelihood ratio 
(GLR) is then computed to quantify the probability that the 
measured residual indicates a fault. The complete deriva-
tion of residual and GLR is available in [3]. One benefit of 
using the GLR as metric is that it intensifies small 

differences between probe and model, while being robust 
against changes due to standard accelerator operation such 
as cavity detuning. The three residuals corresponding to the 
three traces of Fig. 1 are shown in Fig. 2.   

 
Figure 2: The Generalized Likelihood Ratio (GLR) proved 
to be a useful metric to categorize trips. The shape and 
magnitude of the GLRs differs greatly between trips. 

The next step consisted in automating the trip review 
to decide if a quench was real or not. A training set of 453 
trips were reviewed by an expert and tagged as “real” or 
“false”, to indicate if the trip was indeed a quench or was 
due to some other fault. An unsupervised classification 
based on k-means square was then used to define classes 
for the datasets tagged as quenches. A class threshold was 
defined using the quenched and non-quenched trips of the 
training data set. More details on the machine learning al-
gorithm are given in a paper currently in preparation. The 
evaluation of new trips consists then of computing the dis-
tance to the class centre point. The trip is tagged as non-
quench if this distance exceeds the threshold, as quench 
otherwise. This analysis is run daily as a cron job for every 
new trip snapshot [7]. The program computes the residual 
and GLR for all pulses of the snapshot and decides if the 
trip was a quench based on the GLR distance to the class 
centre point. A picture to highlight the result (Fig. 3) is gen-
erated: 

 
Figure 3: Graphical outcome of the GLR analysis. 
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On the left, the RF waveforms: forward, reflected and 
probe for the last nominal pulse (solid) and for the faulty 
pulse (dashed lines) in amplitude (top) and phase (bottom). 
The top right shows the time domain residual trace for that 
faulty pulse and the lower right plot shows the correspond-
ing GLR. The GLR waveforms (one per cavity per RF 
pulse) are appended to the trip snapshot file.  The outcome 
is summarized into a table and emailed as a daily summary 
to operation experts.  

RESULTS 
In this section, the following definition of accuracy a is 

used:  
 

𝑎
𝑇𝑃 𝑇𝑁

𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁
 (2) 

 
where TP is a true positive (i.e. the algorithm accurately 
detected a quench), TN is a true negative (the algorithm ac-
curately recognized that a trip was not a quench), FP is 
false positive (i.e. a “fake” quench) and FN is a false neg-
ative (the algorithm failed to identify a real quench).  

The QDS has been running since the first day of opera-
tion of the European XFEL (Jan. 2017) but the GLR post-
mortem analysis is run daily only since September 2021. 
In this contribution, statistics are derived for the period 
Sept. 22nd 2021 to June 8th 2022, corresponding to 195 days 
of nominal RF operation (removing machine shutdown, 
startup or software development days). Over this period, 
124 trips snapshots were recorded. The QDS tripped 65 
times, 55 trips were actual quenches (TP = 55), 10 were 
false positives. Another 59 trips occurred but were trig-
gered by other technical interlock mechanisms such as cou-
pler interlock, machine protection system or high-power 
inhibit (i.e. klystron gun arc for example). Among those 
faulty pulses, three also presented a quench, not caught by 
the QDS because another interlock triggered first (FN = 3). 

All these trips were also analyzed using the GLR 
method. All 55 quenches correctly detected by the QDS 
were also correctly identified by the GLR. Furthermore, 
among the 10 trips that “fooled” the QDS, the GLR dis-
credited nine of these trips as “non-quench”. Amongst the 
remaining cases, four were identified as possible quenches: 
post analysis proves that one wasn’t (FP = 1) but three 
were (FN = 3). These cases are counted as errors, since the 
GLR failed to recognize with enough accuracy real and 
false quenches. Table 1 summarizes the accuracy and their 
different components for the QDS and GLR approaches. 

Table 1: Accuracy of QDS and GLR 

 TP TN FP FN a 
QDS 55 56 10 3 89.5% 
GLR 55 65 1 3 96.8% 

 
The accuracy comparison is not entirely fair, since the GLR 
only runs on post-mortem data, and doesn’t carry the re-
sponsibility to interlock the RF, as is the case for the QDS.  
It is reasonable to assume that the accuracy of the GLR 
would change if this algorithm were to look at all pulses. 
However, one should stress that all real quenches detected 

by the QDS were also correctly identified as quenches by 
the GLR and the GLR accurately discarded the fake 
quenches (nine out of ten instances). Figure 4 gives an ex-
ample of a “fake” quench that triggered the QDS, but was 
correctly identified as a non-quench by the GLR. The cav-
ity gradient amplitude is shown for three consecutive 
pulses. The first one being nominal and the subsequent two 
flagged as faulty. In this example, the QDS stopped the RF 
after two faulty pulses. The corresponding QL displayed in 
the legend show a drop from nominal value in excess of the 
5×105 threshold, hence triggering the QDS to trip the sta-
tion.  

The GLR traces are also displayed (right axis) and are 
very distinct from the GLR traces corresponding to a real 
quench (Figure 2). The GLR algorithm accurately tagged 
these pulses as faulty, but not as quenches.  

 
Figure 4: Gradient amplitude for three consecutive pulses:  
the last nominal and the next two faulty ones (left axis) and 
the corresponding GLR (right axis). The GLR for the nom-
inal pulse is in the noise (not visible on this scale). 

CONCLUSION AND FUTURE WORK 
An overview of an approach relying on machine-learn-

ing methods to categorize trips as quench or not-quench 
recently implemented at the European XFEL was pre-
sented. This approach relies on existing trip snapshots to 
compute additional metrics (referred to as residuals) to 
evaluate if the quench is real. The next step consists of run-
ning this analysis on live data (as opposed to post-mortem). 
There are 2 options: a software- and a firmware-based ap-
proach. Running the analysis is computationally expensive 
so that the software approach cannot be implemented on 
the front-end CPUs. A solution would be to use external 
CPUs sharing a direct PCIe bus connection to the front-end 
CPU. The firmware solution is attractive because it doesn’t 
require additional hardware, but might be quite expensive 
in terms of FPGA resources. Both options are currently un-
der evaluation. Another future work consists of looking 
into adapting the GLR algorithm for normal conducting 
cavities (such as the RF gun). The GLR approach could 
then help categorize different gun trips.  
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