Author: Wessel, J.K.
Paper Title Page
TUPOPA30 Innovative Magnetron Power Sources for SRF Linacs 473
TUOPA05   use link to see paper's listing under its alternate paper code  
 
  • M. Popovic, M.A. Cummings, A. Dudas, R.P. Johnson, R.R. Lentz, M.L. Neubauer, T. Wynn
    Muons, Inc, Illinois, USA
  • T. Blassick, J.K. Wessel
    Richardson Electronics Ltd, Lafox, Illinois, USA
  • K. Jordan, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Supported in part by US Department of Energy Nuclear Physics SBIR Grant DE-SC0022484
Magnetron RF power sources for single cavities can cost much less and operate at much higher efficiency than klystrons, but they do not have the phase and amplitude control, or the lifetime, needed to drive SRF cavities for superconducting particle accelerators. Existing magnetrons that are typically used to study methods of control or lifetime improvements for SRF accelerators are built for much different applications such as kitchen microwave ovens (1kW, 2.45 GHz) or industrial heating (100 kW, 915 MHz). Muons, Inc. is working with Richardson Electronics LLC to develop fast and flexible manufacturing techniques to allow many ideas to be tested for construction variations that enable new phase and amplitude injection locking control methods, longer lifetime, and inexpensive refurbishing resulting in the lowest possible life-cycle costs. A magnetron suitable for 1497 MHz klystron replacements at Jefferson Lab has been designed, constructed, and tested.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA30  
About • Received ※ 16 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)