Author: Olivas, E.R.
Paper Title Page
MOPOGE16 Development of High-Gradient Accelerating Structures for Proton Radiography Booster at LANSCE 188
 
  • S.S. Kurennoy, Y.K. Batygin, E.R. Olivas
    LANL, Los Alamos, New Mexico, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. We propose accomplishing this energy boost with a compact cost-effective linac based on normal conducting high-gradient (HG) RF accelerating structures. Such an unusual proton linac is feasible for proton radiography (pRad), which operates with very short beam (and RF) pulses. For a compact pRad booster at LANSCE, we have developed a multi-stage design: a short L-band section to capture and compress the 800-MeV proton beam from the existing linac followed by the main HG linac based on S- and C-band cavities, and finally, by an L-band de-buncher*. Here we present details of development, including EM and thermal-stress analysis, of proton HG structures with distributed RF coupling for the pRad booster. A short test structure is designed specifically for measurements at the LANL C-band RF Test Stand.
* S.S. Kurennoy, Y.K. Batygin. IPAC21, MOPAB210.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE16  
About • Received ※ 23 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 03 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)