Author: Kleffner, C.M.
Paper Title Page
TUPOJO05 Welding and Copper Plating Investigations on the FAIR Proton Linac 345
 
  • A. Seibel, T. Dettinger, C.M. Kleffner, K. Knie, C. Will
    GSI, Darmstadt, Germany
  • M.S. Breidt, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • J. Egly
    PINK GmbH Vakuumtechnik, Wertheim, Germany
 
  A FAIR injector linac for the future FAIR facility is under construction. In order to meet the requirements for copper plating of the CH-cavities, a variety of tests with dummy cavities has been per-formed and compared to simulation. Further dummy cavities have been produced in order to improve the welding techniques. In addition, the results on 3d-printed stems with drift tubes will be presented.  
poster icon Poster TUPOJO05 [2.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO05  
About • Received ※ 08 August 2022 — Revised ※ 14 August 2022 — Accepted ※ 24 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO06 Design and Test of Beam Diagnostics Equipment for the FAIR Proton Linac 348
 
  • T. Sieber, P. Forck, C.M. Kleffner, S. Udrea
    GSI, Darmstadt, Germany
  • I. Bustinduy, Á. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
  • J. Herranz
    Proactive Research and Development, Sabadell, Spain
  • A. Navarro Fernandez
    CERN, Meyrin, Switzerland
 
  A dedicated proton injector Linac (pLinac) for the Facility of Antiproton and Ion Research (FAIR) at GSI, Darmstadt, is currently under construction. It will pro-vide a 68 MeV, up to 70 mA proton beam at a duty cycle of max. 35µs / 4 Hz for the SIS18 synchrotron, using the UNILAC transfer beamline. After further acceleration in SIS100, the protons are mainly used for antiproton production at the Antiproton Annihilation Darmstadt (PANDA) experiment. The Linac will operate at 325 MHz and consists of a novel so called ’Ladder’ RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. In this paper we present the beam diagnostics system for the pLinac with special emphasis on the Secondary Electron Emission (SEM) Grids and the Beam Position Monitor (BPM) system. We also describe design and status of our diagnostics testbench for stepwise Linac commissioning, which includes an energy spectrometer with associated optical system. The BPMs and SEM grids have been tested with proton and argon beam during several beamtimes in 2022. The results of these experiments are presented.  
poster icon Poster TUPOJO06 [3.264 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO06  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)