Author: Bettoni, S.
Paper Title Page
THPOJO08 RF Design of Traveling-Wave Accelerating Structures for the FCC-ee Pre-injector Complex 707
 
  • H.W. Pommerenke, A. Grudiev, A. Latina
    CERN, Meyrin, Switzerland
  • S. Bettoni, P. Craievich, J.-Y. Raguin, M. Schaer
    PSI, Villigen PSI, Switzerland
 
  Funding: This project received funding from the EU’s Horizon 2020 research program (grant No 951754), and was done under the auspices of CHART (Swiss Accelerator Research and Technology Collaboration).
The linacs of the FCCee (Future Circular Electron-Positron Collider) injector complex will both provide the drive beam for positron production and accelerate nominal electron and positron beams up to 6 GeV. Several linacs comprise different traveling-wave (TW) accelerating structures fulfilling the beam dynamics and rf constraints. Notably, high-phase advance large-aperture structures accelerate the positron beam at low energies. All TW structures are rotationally symmetric for easier production. Long-range wakes are damped by HOM detuning. Operating mode and HOM parameters were calculated based on lookup tables and analytic formulas, allowing for rapidly scanning large parameter spaces. In this paper, we present both methodology and realization of the rf design of the TW structures including their pulse compressors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO08  
About • Received ※ 24 August 2022 — Accepted ※ 08 September 2022 — Issue date ※ 15 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)